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Abstract

Evidence of geologic activity still occurring in Rio Grande Rift (RGR) includes quaternary

faulting, seismicity, and widening at a small rate. We map the crustal thickness and seismic

velocity ratio to create crustal model cross sections that highlights the regional extension

of the Southern Rio Grande Rift (SRGR). Specifically, we compute receiver functions and

receiver function stacks for 147 USArray and previously collected data, and interpolate

the crustal and velocity results using a kriging interpolation scheme. By incorporating

gravity, magnetics, receiver functions, velocity models, and the interpretation of seismic

reflection/refraction data, we produce a constrained crustal model that characterizes the

evolution of the SRGR. In consequence, important questions related to tectonic and litho-

spheric activity of the Rio Grande Rift remain unresolved. To address some of these

geological questions, we developed a 3D crust and upper mantle velocity model using a

constrained optimization approach for joint inversion of surface wave and receiver func-

tions. Our 3D models show a thin lower velocity crust anomaly along the southern east

portion of the Rio Grande Rift, a persistent low velocity anomaly underneath the Colorado

Plateau and Basin and Range province, and another one at depth beneath the Jemez lin-

eament, and the southern RGR.

Furthermore, to make the joint inversion process more robust, we repeatedly solve the

joint inversion problem with di↵erent possible combinations of variances known as the

multi-objective optimization technique. From the mathematical viewpoint, such solutions

form a Pareto front of the corresponding multi-objective optimization problem. If a certain

geological feature is visible in all these solutions, then we can be confident that this feature

is also present in the actual solution corresponding to the actual (unknown) values of the

variances – i.e., that it is the feature of the actual Earth structure. We applied this more

robust optimization technique to the Texas region and we also compared the structure of

the upper mantle with other ancient and/or active rift systems within the Texas region.
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Our resulting 3-D velocity models will helps us to better understand the tectonic history

and physical properties of the Earth structure and also determine if an ancient rift system

within Texas is reactivated or not.
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Chapter 1

Geophysical constraints on the

crustal structure of the Southern Rio

Grande Rift

Evidence of geologic activity still occurring in Rio Grande Rift (RGR) includes quaternary

faulting, seismicity, and widening at a small rate. We map the crustal thickness and seismic

velocity ratio to create crustal model cross sections that highlights the regional extension

of the Southern Rio Grande Rift (SRGR). Specifically, we compute receiver functions and

receiver function stacks for 147 USArray and previously collected data, and interpolate

the crustal and velocity results using a kriging interpolation scheme. By incorporating

gravity, magnetics, receiver functions, velocity models, and the interpretation of seismic

reflection/refraction data, we produce a constrained crustal model that characterizes the

evolution of the SRGR. Our constrained crustal models show that there is an uplifted lower

and upper crust, and shallower Moho in the region of SRGR. This chapter is based on the

foundation of the following manuscript:

Thompson, L., A. A. Velasco, and M. Hussein, 2015, Geophysical constraints on the crustal

structure of the Southern Rio Grande Rift, Bulletin of the Seismological Society of America.,

(in review).
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1.1 Introduction

The Rio Grande Rift (RGR), one of the major continental rift zones, extends ⇠1000 km

from central (Leadville) Colorado to south of El Paso, Texas (Figure 1). The southern end

of the rift is poorly defined in the geologic record of the rift system (Keller and Baldridge,

1999) and there have been few seismic studies that provide information on the deeper rift

structure ([55]; [5]; [34]; [121]; [80]). The southernmost portion of the RGR has recently

experienced crustal extension as high as ⇠0.5 mm/yr and appears to be extending more

towards the west of the RGR ([144]; [58]; [12]). Geodetic measurements near Socorro,

New Mexico failed to detect any significant extension rates across the RGR ([109]; [58]).

However, the rift does appear to be widening at a rate of ⇠0.14 mm/yr from 5 Ma to

the present ([144]; [58]; [12]). Two key questions remain about the rift system: 1) is it

actively deforming along its southern extent ([12]; [53]; [81]); and 2) how does the rift

influence the evolution of adjacent areas within the North American Plate ([100])? To

address these questions, we define the crustal and upper mantle structure of the southern

RGR using data from the EarthScope Transportable Array (USArray), permanent stations

in the region, and the LA RISTRA ([143]) experiment to construct an image of the crust-

mantle boundary in the southern Rio Grande Rift (SRGR). In particular, we compute and

stack teleseismic receiver functions for 147 stations, which allows for crustal thickness and

seismic velocities (V
p

/V
s

) to be determined. We use the receiver function results to model

gravity and magnetic data to create crustal models of the SRGR. The models show crustal

thinning along the rift axis, suggesting an uplifted lower and upper crust.

1.2 Tectonic Setting

The RGR, a major continental rift, initiated during the late Cenozoic and separates the

Proterozoic continental lithospheres of the Great Plains and the Colorado Plateau ([53];

[120]; [82]; [101]; [9]). Rifting and extension began in the late Oligocene or early Miocene

2



([26]). Two extensional episodes led to the formation of the RGR. An initial stage of

extension began at 30-20 Ma, with an association of low-angle faulting and crustal dom-

ing. The second phase of extension occurred (3-10 Ma), which involved 10% of extension

trending in the E-W direction ([55]; [139]). Wilson (2003) hypothesized that this extension

resulted from an upper mantle asthenosphere upwelling and thermal lithosphere erosion.

Extension along the western interior portion of North America stimulated the formation

of the RGR while leaving the Colorado Plateau from being deformed during this regional

extension (e.g., [68]; [139]). The southern RGR has experienced more regional extension

than the northern portion of the rift ([53]). Associated volcanism occurred in the western

and central parts of the rift, being prominent during the Pliocene and Quaternary ([26]).

Work from the Colorado Plateau-Rio Grande Rift-Great Plains Seismic Transect (LA RIS-

TRA) experiment has shown that the central section of the RGR has a low velocity zone

([143]; [136]; [100]; [34]), suggesting that there could be molten material or that the crust is

thinning beneath the center of the RGR. The zone of crustal thinning widens southward as

does the physiographic expression of the rift. In southern New Mexico, the rift is assumed

to have the thinnest crust (less than 30 km) with very high heat flow ([52]). Recent work

by [121], shows no deep mantle velocities beyond 250 km, and the crustal thinning is likely

a shallower process.

1.3 Approach

1.3.1 Data

We collected three-component seismic data for 147 stations within the area of latitudes

between 29� to 36�N and longitudes between -111� to -102�E (Figure 1) from the LA RIS-

TRA temporary seismic experiment, EarthScope transportable array (USArray), United

States Geological Survey ANSS backbone stations, and the International Monitoring Sys-

tem (IMS) network stations in the region. We obtain seismograms from the Incorporated

3



Research Institutes for Seismology (IRIS) Data Management Center (DMC) for teleseismic

events from Jan, 2000 to Dec, 2009 that have epicentral distances ranging from 30�-95�.

This includes 1,464 seismic events with a minimum magnitude of 5.5 and 86,388 continu-

ous waveforms. USArray Transportable Array (TA), an element of EarthScope, places a

rolling, dense network of over 400 permanent and portable seismographs on a nearly uni-

form 70 km grid across the U.S. Each station of the TA network collects data for two years

before it is re-deployed to a new location ([80]). The USArray was in the in the region from

approximately 2007 to 2010. The nominal spacing (⇠70 km) between USArray stations

allows for both lower crustal and upper mantle seismic studies ([112]). The LA RISTRA

temporary seismic experiment recorded data for 18 months between August 1999 and May

2001 ([9]; [143]).

1.3.2 Receiver Functions

A receiver function maps the seismic response of the Earth beneath a seismic station to

an incoming P-wave by deconvolving the vertical component of a teleseismic earthquake

seismogram from the radial component ([60]). The result allows for the identification of

converted phases derived from strong impedance contrasts (e.g., the crustal-mantle bound-

ary). The receiver function technique takes advantage of converted seismic P waves into S

waves at discontinuities along the ray path ([29]; [4]; [138]), and has been utilized in many

studies (e.g., [143]; [143]; [36]; [42]; [59]; [6]; [64]; [112]). For data collection and processing,

we use the Standing Order for Data (SOD) to request three component seismograms for

P-wave arrivals and for events with a minimum magnitude 5.5, depth in the range of 1600

km and an epicentral distance ranging from 30�-95� (e.g., [87]; [6]).

We employ the receiver function technique using the iterative deconvolution method

of [65] and the stacking approach described in [151]. In receiver function estimation, the

foundation of the iterative deconvolution approach is a least squares minimization of the

di↵erence between the observed horizontal component seismogram and predicted signal

generated by convolution of an iterative updated spike train with the vertical component

4



Figure 1.1: Regional topography of the SRGR and sketch of SRGR boundaries.
Above the contour plot is a color scale of the elevations in meters. The
black triangles signify the stations that we have data for.
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seismogram ([65]). We compute receiver functions using the iterative time deconvolution

with Gaussian width (Ga) factors of 2.5, 1.75, and 1, which is equivalent to applying low

pass filters with cuto↵ frequencies of 1.2, 0.9, and 0.5 Hz, respectively.

We use the receiver function stacking technique introduced by [151], which estimates

the crustal thickness and V
p

/V
s

ratio based on the radial receiver function. Assuming that

no lateral velocity heterogeneities exist, the time separation between the Ps converted wave

and the direct P-wave obtained from receiver functions (tPs) can then be used to estimate

crustal thickness (H), given the average crustal velocities V
p

and a V
p

/V
s

ratio (), and

the constant ray parameter p of the incident wave (e.g., [38], [71]). Through the utilization

and stacking of multiple events, we consequently increased the signal-to-noise ratio (SNR).

This increase in the SNR could be caused by background noise, scattering from crustal

heterogeneities, and P-to-S multiple conversions from other velocity discontinuities ([70]).

Each of the phases are weighted using the H� stacking technique and stacked phases are

then plotted as a gridded image s(H,), which reaches a maxima when all three phases

(tPs, tPpPs, tPsPs+PpSs) are stacked coherently along with the correct H and  ([151];

[103]). Stacking not only enhances the SNR, but also supresses lateral variations in the

vicinity of the recording station ([103]). An example of this technique is shown in Figure 2

for one of the Earthscope USArray stations, 219A.

We manually review each receiver function stack for quality, making sure the maximum

solutions do not fall on the bounds of our grid search. This process is repeated until

we have a stack that appears robust. If we have less than 10 receiver functions in the

stack, we remove the station from our interpolation, described below. We compared our

findings with the EarthScope Automated Receiver Survey (EARS) website results, and

found inconsistencies that are likely the result of di↵ering quality control parameters and

loss of high frequency information ([112]; [143]).

6



219A

Figure 1.2: Receiver function stack of station 219A, Vp/Vs vs H (km). The black
dot with the white circle around it represents the preferred value. Note
the multiple shaded regions might result in a poor choice of crustal
thickness.
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1.4 Kriging Interpolation

Kriging is an optimal interpolation scheme based on regression against observed values of

surrounding data points and weighted according to spatial covariance values (e.g., [113]).

Kriging interpolation estimates values at a given location as a weighted sum of data values

at surrounding locations just like common interpolation algortithms such as inverse distance

squared, splines, radial basis functions, triangulation, etc. ([39]). We use a Bayesian

kriging interpolation scheme in order to incorporate error associated with modeling to

better constraint the mapping of Vp/Vs and crustal thickness ([113]). For this analysis, we

krig values of crustal thickness and V
p

/V
s

using the error function blending functions with

2� (⇠200 km) of influence to guarantee adequate spatial sampling.

Figures 3 and 4 show contour plots of crustal thickness (Moho depth) and V
p

/V
s

of

SRGR from the receiver function stacks using 147 stations from the USArray data set,

respectively. Figure 3 shows the crustal thickness in kilometers with black to white colors

for thin to thicker crust. In Figure 4, black to white colors represent lower to higher

V
p

/V
s

ratios. As can be seen, the V
p

/V
s

values or crustal thickness values between the

stations do not vary as much as from the EARS results, which suggests that our strict

quality restrictions work well for our data set. Figure 4 shows areas with high V
p

/V
s

and

may represent areas of the rift system that are experiencing partial melt, while the crustal

thickness of the rift system (Figure 3) appears to be consistent with previous results ([52]).

1.5 Gravity and Magnetic Data

We obtained gravity data from the University of Texas at El Paso (UTEP)-Pan American

Center of Earth and Environmental Studies-(PACES) that is currently hosted at the Cyber-

ShARE Center of Excellence at UTEP. The gravity data were merged from a variety of

surveys and cover the U.S. and the border region (Figure 5). We obtain aeromagnetic data

from the U.S. Geological Survey with a grid spacing of 1 km ([8]) (Figure 6). Average error

8
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Figure 1.5: Bouguer gravity anomaly map of the Rio Grande and surrounding area.
High amplitude gravity anomaly observed in SRGS.

for this data set ranges from 0.05 to 2mGal. Terrain corrections were calculated by [134]

using a digital elevation model and a technique based on the approach of [91]. A Bouguer

gravity correction was made using 2670 kg/m3 as the reduction density. We used 59,863

Bouguer gravity points to create a Bouguer gravity anomaly map (Figure 5).

The Bouguer gravity values decrease from (�250 mGal) in the Colorado Plateau to

(�80 mGal) in the Franklin Mountains, Portillo Volcanic Field (PFV), and the Great plains

(Figure 5), gravity values range from �60 to �50 mGal in Delaware basin. Low gravity

anomalies are likely caused by unconsolidated sediments in the basins, metasedimentary
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and granitic rocks, or by thicker crust or some combination of these features. One feature

of interest is the Delaware basin that is located at the western sub basin of the Permian

basin, which developed as a cratonic depression in response to Early Pennsylvanian crustal

shortening in the Marathon fold and thrust belt ([48];[106]). High gravity associates with

thin crust (shallow Moho), near El Paso, and in the central Rio Grande basin.

We filtered the grid by using a low pass, Gaussian, and strike. The purpose of filtering

the grid is to shift the anomalies into their actual spatial position and making sure they

are not shifted or o↵set from their location to create a reduce-to-pole magnetic anomaly

map (Fig 6) magnetic susceptibility of rocks varies much more than density, magnetic maps

appears more complicated than gravity maps ([52]).

1.6 Crustal Models

Using the crustal thickness from the receiver functions, we construct three crustal scale

models (Figures 7). We selected these profiles to illustrate the di↵erences along the SRGR

and the central RGR, plus compare with previous results along LA RISTRA. We con-

structed models using 2.5-D modeling of gravity data by a program developed by [126] and

further revised by [90] and [19]. Gravity values were extracted from the grid at a 6 km

interval. These values were then used as input for the 2.5-D forward modeling program. We

determined the depth to the Moho from receiver functions, and the densities for the upper

and lower crust and upper mantle were inferred from previous studies ([2],[114], [143], and

[5]). We assign a density of 2600 kg/m3 for the most upper part of the models, although we

realize that the density may be as low as 2360 kg/m3 or as high as 2680 kg/m3. It is di�-

cult to place boundaries to separate the di↵erent densities of the surface material because

of the absence of strong evidence of the exact locations of these boundaries; additionally

surface materials are mixed due to transportation or weathering conditions.

Model A-A’ (Figure 7) is ⇠ 750 km long and is taken with latitude 32� and covers the

southern region of the study area (southern RGR). The depth to the Moho is about 32 km
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the southern region of the study area. Crustal scale model about 550
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lifted crust as an evidence for geothermal activity that causes heating,
stretching and rifting. Model B-B’ is ⇠740 km long, coincide with lat-
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A-A’ and B-B’, starts at Colorado Plateau and Delaware basin.
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at the starting point (A) of the model, decreases to 30 km in rift basin west of El Paso and

deepens to about 45 km under the east flank of the rift and beneath the Delaware basin.

Model A-A’ shows slightly uplifted Moho, lower and middle crust. The flat-topped shape

beneath the area of active upper crust extension suggest that it is primarily the product

of magmatic activity in the lower crust and upper mantle ([115]). Beneath El Paso area,

upper mantle velocities range from 7.75 to 7.9 km/s, which is consistent with a warm upper

mantle and high heat flow values 85 to 125 mWm�2 associated with the SRGR ([5]).

Model B-B’ (Figure 7), approximately 740 km long, is taken at latitude 34�, and passes

through Colorado Plateau, Socorro magma body and ends at the Great Plains (central

RGR). The depth to the Moho is 34 km at the starting point (B) of the model, decreases

to 32 km in the center and deepens significantly to ⇠48 km under the east flank of the rift.

Another explanation for the uplifted crust is Laramide orogeny high velocity bodies and

lateral velocity variation at 5 to 10 km depth beneath Potrillo Volcanic Field (PVF) region

which show the Laramide basement uplift ([5]). Interferometric synthetic aperture radar

(In-SAR) imaging of the central Rio Grande rift (New Mexico, USA) during 1992-1999

reveals a crustal uplift of several centimeters that spatially coincides with the seismolog-

ically determined outline of the Socorro magma body [31]. [15] study of the amplitude

and frequency content of the COCORP (Consortium for Continental Reflection Profiling)

reflections indicates a partially multilayered intrusion. SMB do not reflect any distinguish

signature on the Bouguer gravity anomaly map because the inferred location of SMB is

dominated by gravity low, and the SMB is deep structure (18-22) km.

Model C-C’ (Figure 7), approximately 700 km long, coincides with Rio Grande Rift

Seismic Transect (RISTRA) and cross cut models A-A’ and B-B’, starting at Colorado

Plateau and ending at Delaware basin. The depth to the Moho is ⇠44 km at the starting

point (A) of the model, decreases to 30 km in rift basin and deepens to ⇠47 km under the

east flank of the rift and dome in shape. Model C-C’ shows a dome shape Moho, the Moho

depth is 45 km beneath Colorado Plateau, decreases to 30 km under the Rio Grande rift

and deepened to 47 km in the Great Plains.
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1.7 Discussion and Conclusion

Our crustal models suggest an uplifted lower and upper crust, and shallower Moho in

the region of SRGR; uplifted crust and shallow dome in shape Moho are suggested to

be primarily the product of magmatic activity in the lower crust and upper mantle. For

model A-A’ (Figure 7), our results reveal that the depth to the Moho is about 32 km at

the starting point (A) of the model, decreases to 30 km in rift basin west of El Paso, which

shows that the southern RGR is still actively deforming. In the case of model B-B’ (Figure

7) the depth to the Moho is 34 km at the starting point (B) of the model, decreases to

32 km in the center and deepens significantly to ⇠48 km under the east flank of the rift.

Another explanation for the uplifted crust is Laramide orogeny high velocity bodies and

lateral velocity variation at 5 to 10 km depth beneath Potrillo Volcanic Field (PVF) region,

which show that the Laramide basement uplift and would explain how the RGR influences

adjacent provinces within North American plate ([5]). Our receiver function stacks show

results that are consistent with rifting in the SRGR. In particular, Figure 3 and 4 show

evidence of crustal thinning in the center of the rift, and also a higher V
p

/V
s

ratio that may

signify partial melt and/or higher temperatures in the crust.

Our results have similar characteristics from previous studies in the RGR, but they show

an uplifted lower and upper crust, and shallower Moho in the region of SRGR; uplifted crust

could primarily be the product of magmatic activity in the lower crust and upper mantle,

this is beyond the scope of this research. [121] conclude that the rift is not driven by a

deep mantle upwelling, suggesting that RGR rift formation is caused an upper mantle and

crustal process.

1.8 Data Resources

Seismic data used in this study can be acquired through the (IRIS) Data Management

Center (DMC). We also used seismic data from the EarthScope Transportable Array (US-
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Array) (www.earthscope.org) (last accessed June 2013). The EarthScope Automated Re-

ceiver Survey (EARS) website results can be found through (http://www.seis.sc.edu/ears/)

(last accessed January 2012). Gravity data can be accessed through the University of Texas

at El Paso (UTEP)-Pan American Center of Earth and Environmental Studies-(PACES)

(http://www.research.utep.edu/paces) (last accessed July 2014) that is currently hosted at

the Cyber-ShARE Center of Excellence at UTEP. Aeromagnetic data used in this study is

from the U.S. Geological Survey with a grid spacing of 1 km ([8]).
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Chapter 2

3D structure of the Rio Grande Rift

from 1-D constrained joint inversion

of receiver functions and surface wave

dispersion

The Southern terminus of the Rio Grande Rift region has been poorly defined in the geologic

record, with few seismic studies that provides information on the deeper Rift structure. In

consequence, important questions related to tectonic and lithospheric activity of the Rio

Grande Rift remain unresolved. To address some of these geological questions, we collect

and analyze seismic data from 147 EarthScope Transportable Array (USArray) and other

seismic stations in the region, to develop a 3D crust and upper mantle velocity model. We

apply a constrained optimization approach for joint inversion of surface wave and receiver

functions using seismic S wave velocities as a model parameter. In particular, we compute

receiver functions stacks based on ray parameter, and invert them jointly with collected

surface wave group velocity dispersion observations. The inversions estimate 1D seismic

S-wave velocity profiles to 300 km depth, which are then interpolated to a 3D velocity

model using a Bayesian kriging scheme. Our 3D models show a thin lower velocity crust

anomaly along the southern east portion of the Rio Grande Rift, a persistent low velocity

anomaly underneath the Colorado Plateau and Basin and Range province, and another one

at depth beneath the Jemez lineament, and the southern RGR. Chapter 2 is based on the

following publication:
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Sosa, A., L. Thompson, A. A. Velasco, R. Romero, and R. Hermann,2013, 3-D struc-

ture of the Southern Rio Grande Rift from 1-D constrained joint inversion of receiver

functions and surface wave dispersion, Earth and Planetary Science Letters, 402, 127-

137.doi:10.1016/j.epsl.2014.06.002

2.1 Introduction

Bounded by the Basin and Range province and the Colorado Plateau to the west and the

Great Plains to the East, the Rio Grande Rift (RGR) extends approximately 1000 km from

central Colorado to El Paso, Texas (Figure 1). The RGR has recent volcanism, fault scarps,

and seismicity (Figure 2) and is widening at a modest rate of about 0.5 mm/yr or less ([12],

[58], [144]). Although many studies have focused on the Rift system (e.g., [5], [34], [55],

[100], [136], [143]), the southern terminus of the RGR remains poorly defined ([53]) and few

seismic studies have provided detailed information on the deeper rift structure ([5], [34],

[55]).

Studies of the RGR present several possible Earth models and interpretations, which

may be due to the diversity of the methodologies implemented and the specific location of

the study ([34], [81], [136]). For example, [52] presented a Moho depth map, based on a

compilation of previous studies, and showed significant crustal thinning (⇠ 28 km) in the

southern RGR. [5] conducted a controlled source experiment and developed a detailed pro-

file across the southern RGR, showing a crustal thickness of around 32 km. [34] proposed

that small convection cells in the deeper mantle are responsible for recent magmatic and

tectonic activity, while [21] propose that rotation of the Colorado Plateau played a role in

rift formation.

More recent studies in the region have taken full advantage of data collected by Earth-

Scopes Transportable Array (USArray) to develop models that are derived from a variety

of approaches: seismic tomography ([10], [11], [17], [16], [18], [80], [86], [88], [118], [123],

[127], [145], [147], [149], [148]), receiver functions ([1], [20], [35], [42], [64], [136], [142], [76]),
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joint inversions ([6], [66], [81], [136]). Many models show the main tectonic regions in North

America, but do not necessarily focus on rift formation.

Besides the availability of new data and recent studies on the RGR, important questions

about the Rift evolution remain unresolved: 1) is it actively deforming along its southern

extent ([12], [53], [81])? 2) does it propagate southward?; 3) what is the role of mantle

convection in the formation of the Rift? 4) does partial melt and unstable lithosphere

composition a↵ect the rifts evolution ([34], [136], [143])? and 5) how does it influence the

evolution of adjacent areas within the North American Plate ([100])?

In this chapter, we revisit the driving forces that cause RGR formation using high

quality available data and applying a robust inversion/imaging method for an integrated

analysis of Earth structure that allows us to create three-dimensional (3D) velocity models.

Specifically, we determine the crustal and upper mantle structure of the RGR using the

USArray data (www.earthscope.org) along with other data sets. We apply a constrained

optimization 1D joint inversion approach ([121]) using receiver functions for 147 USArray

and the LA RISTRA (Colorado Plateau/Rio Grande Rift Seismic Transect Experiment

([34], [136]) stations ([143]; [125]), and a high quality surface wave dispersion data set pro-

vided ([47]), and then interpolate the results to obtain a 3-D shear velocity model of the

region. We find little evidence of deep mantle upwelling driving rifting.

2.2 Tectonic Setting

The RGR, a major continental rift, formed in the late Oligocene or early Miocene ([26])

and separates the Proterozoic continental lithospheres of the western Great Plains and the

Colorado Plateau ([9], [53], [82], [101], [120]). An initial stage of extension began at 30-20

Ma, with low-angle faulting and crustal doming. The second phase (3-10 Ma) involved

10% of extension trending in the E-W direction ([54], [139]). [139] hypothesized that this

resulted from an upper mantle asthenosphere upwelling and thermal lithosphere erosion.

Extension along the western interior portion of North America stimulated the formation
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of the RGR, while leaving the Colorado Plateau from being deformed during this period

(e.g., [68], [139]). [53] highlight that the southern RGR has experienced more extension

than the northern section of the rift, while [58] did not find significant extension across

most of the RGR but the southernmost part (as ⇠0.5 mm yr�1). [12] also show that the

extensional deformation is not concentrated in a narrow zone centered on the Rio Grande

Rift but rather is distributed broadly from the western edge of the Colorado Plateau well

into the western Great Plains.

The Rio Grande rift broadens and changes strike at the US-Mexico border (Figure 2)

and has evidence of volcanism and seismicity. Volcanism was prominent in the rift area

during the Pliocene and Quaternary ([26]), and also during the Cenozoic especially along

the trend called Jemez lineament to the west of the rift ([34]). It is associated to large

negative gradients in lithospheric thickness on both sides of the rift ([64]). Although the

RGR is not as seismically active as other parts of the North American plate margin, the

faults in the region show Quaternary o↵sets ([24]). The RGR does appear to remain more

seismically active than the adjacent Basin and Range Province ([73]) suggesting the two

regions may be responding to extensional processes di↵erently. Additionally, the extension

directions during rifting appear to have rotated in a clockwise sense since its inception at

⇠30 Ma ([54] and references therein), but the causes of this rotation remain unknown.

The LA RISTRA passive experiment results have shown that the center of the RGR

has a low velocity zone in the upper mantle ([34], [136], [143]), suggesting that there could

be melt material or that the crust is thinning beneath the center of the RGR. The zone

of crustal thinning widens southward as does the physiographic expression of the rift. In

southern New Mexico, the RGR seems to have experienced more deformation from a geo-

physical perspective, creating the thinnest crust (less than 30 km) with very high heat flow

([52]). [100] integrated seismic velocities, gravity and xenolith data, to explore tempera-

ture and compositional variations together with partial melt content beneath the eastern

Colorado Plateau and RGR. They interpreted the results of that study as a product of mod-

ified and/or thinned lithosphere. Furthermore, [100] argue that the RGR and southeastern
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Figure 2.1: Regional topography of the SRGR and sketch of SRGR boundaries.
The white triangles signify the stations that we have data for.

22



Colorado Plateau was underlayed by a low-density upper mantle province, which does not

trend along upper crustal tectonic boundaries, but correlates with regions of late Tertiary

magmatism. Recently, [6] jointly inverted seismic data constrained by gravity anomalies

concluding that the low velocity mantle beneath the RGR indicates that some removal of

the lithosphere has occurred.

2.3 Receiver Functions

A receiver function maps the seismic response of the earth beneath a seismic station to

an incoming, teleseismic P wave. Deconvolving the vertical component of a teleseismic

earthquake seismogram from the radial component (e.g., [60]) results in a receiver func-

tion, which then allows for the identification of converted phases corresponding to strong

impedance contrasts (e.g., the crustal/mantle boundary). Since we use teleseismic events

that arrive to the stations with near-vertical incidence, receiver functions can also be used

for imaging deep structure ([36], [42], [59], [64], [112]). Receiver functions can provide valu-

able information for investigating magma lenses within the crust, determining the Moho

depth, other upper-mantle discontinuities ([70]), structure and evolution of the crust ([9]),

and rifting extension and magmatism (e.g., [28]).

For this study, we collect three-component seismic data for 147 stations within the area

of latitudes between 29� to 36�N and longitudes between -111� to -102�E (Figure 1) from

the LA RISTRA portable seismic experiment, EarthScope transportable array (USArray),

United States Geological Survey ANSS backbone stations, and the International Monitor-

ing System (IMS) network stations in the region ([125]). The nominal spacing (⇠70 km)

between USArray stations allows for both lower crustal and upper mantle seismic stud-

ies ([112]). The LA RISTRA experiment recorded data for a year and a half beginning

in August 1999. [125] compared their findings with the EarthScope Automated Receiver

Survey (EARS) website results (http://www.seis.sc.edu/ears/), and found inconsistencies

that are likely the result of di↵ering quality control parameters and loss of high frequency
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Figure 2.2: Regional topography of the New Mexico, Texas, and Mexico border re-
gion and approximate tectonic boundaries (Basin and Range, Colorado
Plateau, Great Plains, southern Rio Grande Rift (SRGR)) based on
(Song and Helmberger, 2007, Wilson et al., 2005, Keller and Baldridge,
1999, Bashir et al., 2011). The white triangles represent the seismic sta-
tions from which we used data for this study, including NM stations,
ANSS backbone stations (MNTX, ANMO, MSTX), IMS network sta-
tions (TX31, TX32), and USArray stations (all other stations). Three
di↵erent profiles have been selected to study the crustal and upper man-
tle structure for the sole purpose of obtaining a better understanding
of the evolution of the rift system.
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information ([112]; [143]). We utilize the receiver function data set provided by [125], which

includes 434 receiver functions stacked in ray parameter bins derived from 1464 teleseismic

seismic events with a minimum moment magnitude of 5.5 and occurring from January,

2000 to December, 2009. This data set focuses in the southern Rio Grande Rift, although

the area of the imaged region is much larger ([125]).

2.4 Surface Wave Dispersion

In general, surface waves dominate seismograms as the largest amplitude waves from an

earthquake and have observed lower frequencies than body waves. Furthermore, surface

wave velocities vary depending on the depth sampled by each period, resulting in dispersion.

Measuring dispersion of surface waves provides valuable information for studying Earths

crustal and mantle velocity structure ([84], [116], [124]). In particular, Love and Rayleigh

wave group dispersion observations generally account for average velocity structure as a

function of depth ([51], [72], [116], [124]).

As part of the systematic determination of earthquake moment tensors for North Amer-

ican earthquakes, Saint Louis University measures fundamental mode Love and Rayleigh

wave spectral amplitudes and group velocities using a multiple filter analysis from local

to regional earthquakes. Tomography is then used to obtain tomographic images of group

velocity dispersion for North America with emphasis on the continental United States

(Ammon, personal communication; [22]. As of December 2013, there were over 2,020,514

dispersion measurements available for use. Furthermore, the dataset contains dispersion

measurements from regional earthquakes, which allows for measurements at shorter periods

(less than 15 s) and more sensitivity to shallower Earth structure (upper mantle and crust).

We calculate the dispersion curves at each station using the tomographic dispersion model

([47]) for our analysis of the RGR.

To demonstrate the stability of the measurements, we interpolate the surface wave data
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Figure 2.3: We show group velocity maps for the RGR region using 3 di↵erent
periods (10 s, 50 s, and 100 s). The black triangles represent all the
seismic stations that we used to plot the group velocity maps for the rift
system. From the group velocity maps, we note that we can resolve the
di↵erent tectonic provinces at di↵erent periods, in particular the slow
velocities that persist at longer periods within the Basin and Range
province.
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for several periods (Figure 3) using Bayesian kriging ([113]). Figure 3 shows group velocity

maps for the RGR region using 3 di↵erent periods (10 s, 50 s, and 100 s), although we

include periods up to 140 s. From the group velocity maps, we distinguish the di↵erent

tectonic provinces at di↵erent periods, in particular the slow velocities that persist at longer

periods in the Basin and Range province. To determine how deep the surface wave data

can resolve for our joint inversion, we calculate data sensitivity kernels for several stations

([46]). Figure 4 shows the surface waves sensitivity kernels plotted as a function of depth

for a suite of periods used in our analysis. From this calculation, we determine that the

surface waves resolve to approximately 300 km of depth; thus, we include results from

10� 300 km in depth for our 3-D models.

2.5 1-D Constrained Joint Inversion

Joint inversion involves the simultaneous optimization of several objective functions, such

as the l
2

-norm data misfit. Since the objective function is expected to be less subject to

local minima, this approach reduces intrinsic non-uniqueness of the inverse problem ([25]).

Some examples of joint inversion studies and data include: cooperative inversion ([67]),

weighted schemes for inverting seismic travel times and gravity data ([62]), DC resistivity

and seismic data ([33]), receiver functions and surface wave dispersion ([14], [51], [121],

[136]), surface wave velocity and gravity observations ([6], [69], [72]), receiver functions,

surface wave dispersion, and magnetotelluric data ([77], [78]), and topography, Bouguer

anomalies, geoid height, and surface heat flow data ([50]). In most of these studies, the

main assumption is that the data sets comprised in the inversion complement each other

and sample similar geological boundaries.

In this work, we apply a 1D constrained optimization approach for joint inversion of

two complementary data sets, receiver functions and surface waves group dispersion ([51])

using Primal-Dual Interior Point methods as a solver ([121]). Our approach addresses some

of the well known numerical di�culties that arise for large-dimensional model spaces by
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Figure 2.4: Sensitivity kernels for surface wave dispersion for four di↵erent stations
located at each province included in this study. The surface waves
sensitivity kernels are plotted as a function of depth for several periods.
Based from the sensitivity kernel plots, we are able to determine what
depth we can resolve, which is about 300 km depth.
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using inequality constraints to incorporate a priori information and constrain further the

geophysical inversion ([121]).

We characterize the Earth’s structure by using S-wave velocities as the model parameter.

The forward nonlinear operator F 2 Rm evaluated at a given velocity x 2 Rn provides a

prediction of the Earths response according to the data used as input. For a given observed

data vector, y 2 Rm, we pose the inverse problem as

min
x

1

2

⇣��F SW (x)� ySW
��2
W

+
��FRF (x)� yRF

��2
W

⌘
(2.5.1)

where W represents a weighted diagonal matrix used to equalize the contribution of

each data set with respect to physical units and number of data points, while accounting

for data set influence ([121]). In our case, the forward operator, F , collects both the

numerical computation of synthetic waveforms for receiver functions, FRF , ([4]), and the

numerical evaluation of surface waves dispersion velocities, F SW , ([72]). We assume a

typical uncertainty value �2

i

of 0.05 (km/s) for SW , 0.01 (s) for RF observations ([51]),

and we accommodate the amount of influence for each data set according to the station

data quality. In general, this value is set equal for most of the stations.

Instead of the standard formulation of the inverse problem as in the unconstrained

weighted nonlinear least squares (NLSQ) setting (2.1), we solve a sequence of linearized

constrained LSQ with F
0
(x

k

) as the matrix with the partial derivatives of F (x) =

2

4 F SW

FRF

3

5

. Therefore we rewrite problem (2.1) as,

min
x

1

2
kF 0(x

k

)x+ bk2
W

s.t. g(x) � 0, (2.5.2)

where b = F (x
k

)� y � F 0(x
k

)x
k

is the residual vector. Here, the inequality constraint

defined as

g(x) =

8
>>><

>>>:

x� �
min

�
max

� x, � 2 (0, �
max

� �
min

),

⌘� � 1

2

kLxk2
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allows us to add appropriate bounds corresponding to a priori minimum and maximum

velocities, i.e. �
min

 x  �
max

, while enforcing a roughness model constraint by using

a first order discrete derivative operator L ([44]). The idea of a narrow class of models

to be used in the inversion may help the originally ill-posed inverse problem to become

well-posed ([150]). We apply primal-dual interior point (PDIP) methods to solve problem

(2.2), which introduce an intrinsic regularization to the inverse problem making the joint

inversion algorithm more robust ([83], [121]). In this method, we define the augmented

Lagrangian function associated to (2.2): �(x, z) = 1

2

kF 0(x
k

)x+ bk2
W

� g(x)T z, z > 0 where

z 2 R2n is the Lagrange multiplier corresponding to the inequality constraints.

Interior point methods are based on Newtons method. In our case, the necessary or per-

turbed Karush-Kuhn-Tucker (KKT) conditions, computed by di↵erentiating with respect

to the primal variables x and z, provides the right hand side of a Newtons system. This

system can be solved iteratively by using a linesearch strategy ([83]) while enforcing the

iterates to stay in a feasible (interior) region as described in [121]. The iterative process

proceeds until it is either terminated when the misfit is less than 10�6, or a maximum

number of iterations no greater than six is reached, or the di↵erence between iterates fail

to di↵er more than a threshold of 10�5. For all the stations involved in the geophysical

inversion, the initial velocity model, x
0

, corresponds to the AK-135 model of [56], starting

at 10 km depth and distributed at a 2 km interval up to 70 km depth, then at a 5 km

interval up to 250 km and finally at 10 km until 300 km.

Since any inversion algorithms produces non-unique results, with ours being no excep-

tion, it seems helpful to being with other information, such as known geological constraints.

By incorporating explicit velocity bound constraints with a measure of roughness into the

inversion model, and for some of the stations adding a regularization term, our approach

can thus produce a better constrained model while having more stable inversions ([121]).
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2.6 Joint Inversion Results

We perform 1D joint inversions using our PDIP approach for 147 stations from USArray

and LA RISTRA experiment. In general, each independent joint inversion includes at least

3 receiver function bins created according to an average ray parameter, with a width of

approximately 0.01 s/km between 0.04 s/km and 0.07 s/km. The average ray parameter

was determined by taking the mean value of the maximum and minimum ray parameter

for each station before being used for stacking. The number of receiver functions employed

to create these stacks depends on the station, but in general is not less than 25 per ray

parameter. Each receiver function consists of 820 data points for a time range from -5 to

80 seconds. We also include fundamental mode Love and Rayleigh group velocities with 50

to 65 dispersion measurements, with periods between 5 to 140 seconds. Since the station

spacing of the USArray is about 70 km, we anticipate lateral resolution of that order for

each individual 1D inversion in the southern RGR region.

As supplementary material, refer to our paper [121], to see the four examples (Figures

S1-S4) that are within the distinct tectonic provinces for crustal and upper mantle 1D

velocity structure computed by using the constrained joint inversion algorithm: station

118A in the Basin & Range province (Figure S1), station NM26 in the center of the RGR

(Figure S2), station V18A in the Colorado Plateau (Figure S3), and station W26A in the

Great Plains (Figure S4). The figures show the fit to the RF observations and the Love

and Rayleigh wave group dispersion curves, plus the final model approximation provided

by the inversion. Velocity values were extracted from layered models as described before.

2.7 Kriging interpolation from 1D velocity profiles

Since our ultimate goal is to create a 3D Earth structure model of the Rio Grande Rift

region, we use the 1D S wave velocity profiles of each station as input data for a kriging in-

terpolation algorithm ([113]). In general, interpolation algorithms estimate values by using
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a weighted sum of surrounding data. Kriging represents an example of a computationally

e�cient interpolation technique that allows the incorporation of uncertainty on the pre-

dicted values. We implement a Bayesian kriging approach that integrates variable spatial

damping, a useful tool to control the kriged solution in extrapolation zones where few or

no data is available ([113]). In our case, the station spacing within our region represents a

2D spatial grid, with each station now having a depth varying 1-D velocity structure. We

thus can estimate the unknown velocities of the 2-D grid at di↵erent depths based on the

known velocities, thus creating our 3-D model.

Initially, we remove an appropriate trend prior to applying kriging ([113]), which, in

our case, corresponds to the mean of the velocities at a certain depth. A spatially damped

kriging estimator then incorporates variable damping and measurement error multiplied

by a unit-normalized function, which decreases noise values to zero according to the pre-

dictions point relative distance. As a result, we obtain a smoothly damping e↵ect over the

predicted velocities that varies according to each velocity node and its surroundings. For

our results, we choose the blending functions of 2� to guarantee good spatial sampling.

Interpolating the 1-D profiles by means of kriging can help us to illuminate better the

Earth structure beneath each station in the RGR. Schematically, if each station had perfect

azimuthal coverage, the region below each station would have cone shaped raypaths, where

at a certain depth (that depends on station spacing), the raypaths at adjacent stations

begin to overlap, providing us with full subsurface structure coverage. Before this depth,

we expect that the surface wave group dispersion information obtained from regional earth-

quakes can improve the average crustal velocity structure and also the vertical resolution

([112]). In this fashion, we account for velocity structure resolution avoiding additional

inversions by grouping the 1D profiles depending on azimuthal range as indicated by [6].

Generally, the upper mantle of a tectonically active region is expected to exhibit 3D het-

erogeneities with a length scale smaller than both the lateral resolution of surface waves

and vertical resolution of receiver functions ([84]). Therefore, the models obtained by using

these two data sets should resolve the main features beneath the region of study.
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2.8 3-D RGR S-Wave Velocity Model

Figures 5 through 8 show di↵erent perspectives of the resulting 3D crustal and upper mantle

structure images, including the profiles presented in Figure 2. For Figure 5, we use a color

scale (maximum to minimum velocities) to highlight crustal anomalies and a di↵erent color

scale in Figures 6 through 8 with a reduced color spectrum varying from 4.0 km/s to 5

km/s, similar to that used by [136] to highlight mantle anomalies.

Figure 5 shows depth slices from 10 to 35 km that highlight crustal anomalies in our

model. The rift can be seen in the crust with low velocities along its axis from north

to south, from 10 to 30 km in depth. The rift appears to continue southeast along the

Texas-Mexico border, yet we have no resolution south of the border. At 35 km, we have

no signature of the rift, as we likely are in the upper mantle for most of the region.

Figure 6 shows our 3-D velocity model at cross-section A-A’ and B-B’. The ⇠740 km

long cross section A-A’ coincides with latitude 34�, and passes through Colorado Plateau,

Socorro Magma Body (SMB) and ends at the Great Plains. Cross-section B-B’ coincides

with latitude 32� and covers the southernmost part of the study area. Both cross sections

show slightly uplifted Moho beneath the Basin & Range province, and a lower and middle

crust that might be related to magmatic activity in the upper mantle. [34] relates this

activity to convection in the deeper mantle. This area of active upper crust extension is

suggested to be primarily the product of magmatic activity in the lower crust and upper

mantle ([115]). Beneath the Colorado Plateau, Figure 6 also shows a mantle lid between

100 � 150 km as in [34] and [136], and the presence of cold mantle lithosphere about 200

km below the Great Plains. [131] explained thermally these strong fast anomalies at the

western edge of the Great Plains, as cold downwelling lithosphere destabilized by small-

scale convection.

To further investigate the upper mantle of our model, Figure 7 shows depth slices from

50 to 300 km depth in 50 km intervals. At 50 km and 100 km depth, a low velocity anomaly
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Figure 2.5: Crustal slices at di↵erent depths from 10 km up to 35 km illustrating
various S wave velocity models. We use a color scale (maximum to
minimum velocities) to highlight crustal anomalies within the Basin &
Range, Jemez Lineament (JL), Great Plains, and Southern Rio Grande
Rift (SRGR) indicated by the labels on top of the first shear wave model
at 10 km depth. We can clearly see a distinct pattern that is consistent
throughout the di↵erent tectonic provinces in the crustal slices from 10
km to 35 km depth.
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Figure 2.6: (Top) Cross-section A-A’ at latitude 34� shows a clear distinction be-
tween the Colorado Plateau, Socorro Magma Body at the center of the
RGR (middle spheres), and the Great Plains. We find that near the
CP there is a mantle lid between 100-150 km as in Gao et al. (2004)
and West et al. (2004a), and the presence of cold mantle lithosphere
about 200 km below the Great Plains. Anomalously high velocities
begin to appear right below the RGR and continue east of the GP
between the depths of 200300 km. (Bottom) Cross-section B-B’ at lati-
tude 32� covering the southernmost part of the RGR region. We image
a low velocity zone that begins to appear beneath the RGR extending
to the west below the B & R and Colorado Plateau. Both cross sections
show slightly uplifted Moho beneath the Basin & Range province, and
a lower and middle crust that might be related to magmatic activity in
the upper mantle.
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is present north of 34� and appears a�liated with the Jemez lineament. However, another

low velocity anomaly in the southern RGR appears from 50 to 150 km. This anomaly

may be connected with the Jemez lineament, but its persistence and narrowness signifies a

possible upwelling. These anomalies appear to terminate at 200 km depth, with no strong

signatures from 200� 300 km.

Cross-section C-C’ (Figure 8) is ⇠700 km long coincide with the southern part of

the Rio Grande Rift (LA RISTRA) experiment and cross cut the profiles A-A’, and B-B’.

The transect begins at Colorado Plateau and passes through the SMB and ends west of

the southern RGR. We identify an upper mantle low velocity feature beneath the Jemez

lineament, which may originate outside our study area and is present in Figure 7 north of

34� latitude. [34] discussed the possible presence of an eastward flow of mantle from the

Jemez region across the rift with sinking beneath the Great Plains. Furthermore, [136]

state that to the west of the Great Plains, an asthenospheric low velocity channel underlies

the region and extends to 150 km depth. This low velocity zone continues further to the

Colorado Plateau at 100 � 200 km depth. This is similar to what [136] describes, except

that we do identify it directly beneath the Rift and it does not form an inverted U-shape.

Instead, we see an oblique body that may continue outside our study region, which we term

the Jemez Upwelling, that is present in profiles A-A’ and B-B’. The di↵erence between our

results and [136] is likely the result of di↵erent approaches and assumptions, but the 3-D

nature of our results further clarify the anomaly, which we discuss below.

Reviewing the 3-D models in Figures 6 and 8, we find no evidence for a deep mantle

source under the Rift, implying that it is not currently driven by deep mantle upwelling

([143]; [136]). However, [81] suggests that this interpretation was based on static images

that could not assess the level of flow below of the RGR. Based on their flow simulations,

[81] proposes that the mantle flow below the RGR is associated with thermal upwelling. As

in previous studies, we image not only the low velocity mantle beneath the RGR ([34]; [100];

[136]; [142]), but also sharp changes between the RGR and the two surrounding provinces

of Basin & Range and Colorado Plateau ([6]). Along the RGR, we show a persistent low
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Figure 2.7: Shear wave velocity maps at di↵erent depths starting at 50 km up to
300 km. We identify an upper mantle low velocity feature beneath the
Jemez lineament, which may originate outside our study area (see Fig-
ure 7). At 50 km and 100 km depth, a low velocity anomaly is present
north of 34� and seems to be a�liated with the Jemez lineament. How-
ever, another low velocity anomaly in the southern RGR appears from
50 to 150 km.

37



Figure 2.8: Cross-section C-C’ coincides with the southern part of the LA RIS-
TRA passive experiment. Seismically fast mantle underlies the RGR
and relatively slow mantle is seen beneath the Mt. Taylor and Colorado
Plateau. We identify an upwelling beneath the Jemez Lineament, which
we term the Jemez Upwelling. The anomalously high velocities beneath
the RGR appear to decrease at both sides of the rift, particularly be-
neath the GP portion.
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velocity zone that does not originate deeper than 200 km.

2.9 Discussion

Comparing our 3-D model directly to others can be di�cult and requires complete visual-

ization of all models in one figure (e.g., [10]; [88]). Since our models were derived from 1-D

inversions that included two complementary data sets and then interpolated to 3-D, we

expected to find di↵erences in our 3-D model compared to previous studies. We also focus

solely in this region, while many of the other models include much larger regions ([35]; [64];

[81]; [119]; [131]). Thus, we show features relevant to RGR evolution, and highlight those

that we believe are fully consistent with most recent and past models in the southern Rio

Grande Rift obtained by using di↵erent data sets and techniques. We discuss below the

impact of the PDIP approach, the new model for the southern RGR, and finally highlight

the main new feature not highlighted in other work: the Jemez Upwelling and the SRGR

low velocity anomaly.

2.9.1 PDIP methodology

We implement a new approach for joint inversion of receiver function and surface wave

group dispersion data based on constrained optimization ([121]). We create independent

1D Earth velocity profiles of upper mantle velocity structure along the southern RGR. In

general, no smoothing or damping factors were used to stabilize the inversions. This is

an advantage when compared to other standard techniques, which often require tuning of

several regularization parameters. It is well known that for severely ill-posed inversions

that may appear for some stations, determining the optimum regularization parameters

remain as a di�cult and often speculative task ([121]; [150]). There are several strategies

to choose these regularization parameters ([44]; [150]), and some recent advances on trans-

dimensional inversion to include them directly as inversion parameters ([14]). However,

there is not yet an analytical or automatic way to find the best parameter for all particular
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cases ([44]; [78]). The PDIP approach reduces the subjectivity of these selections, since the

simple inclusion of a damping parameter stabilizes the inversion ([121]).

Some stations have inversion convergence issues mostly due to the absence of good

quality RF data to identify absolute S-wave velocities and sharp discontinuities. Those

stations were independently tuned by using several damping factors. We note that to ob-

tain improvements, a damping factor of 0.1 and an influence parameter equal to 0.25 was

necessary. Furthermore, we found that in some cases even modifying the influence parame-

ter to be 0.75, the damping factor did not improve the numerical results for the problematic

stations. We discuss with detail the impact of regularization (damping/smoothing) on our

constrained optimization approach in [121].

[6] use a similar approach combining results obtained by independent joint inversion of

surface wave phase velocities and receiver function information, to compute 1D S wave ve-

locity profiles for the Colorado Plateau. They extracted common features of nearby stations

that were reconciled with observed gravity anomalies. The anomalies are then established

by using empirical relations to density structure. By creating 3D images of Earth structure

based on independent inversions that produce 1D velocity profiles, results are likely inferior

compared to a full 3D parameter approach ([6]). However, a 3D inversion involves a high

volume of information and a great number of parameters, which may be numerically in-

tractable. PDIP methods have been proven to be successful in solving large-scale problems

([83]), and we will explore the migration of our technique to a full 3D inversion in future

work.

We can adjust our inversion approach by tuning the kriging interpolation blending func-

tion according to the geological province where the stations are located, e.g. Basin and

Range, RGR, Great Plains, as an attempt to enhance the performance of the inversion

algorithm. However, our approach allows us to begin with a standard initial model (ak135:

[56]), and produce coherent independent inversions that could be combined for a consistent

3D structure. This represents another di↵erence to the approach presented by [6], where

they weight the contribution of each inversion separately to select a suitable initial model.
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2.9.2 Interpretation: Basin and Range, Colorado Plateau, RGR,

and Great Plains

[100] argue that the RGR and southeastern Colorado Plateau underlay by a low-density

upper mantle province, which does not trend along upper crustal tectonic boundaries, but

correlates with regions of late Tertiary magmatism. The Rio Grande Rift system is charac-

terized by anomalously high topography ([100]) and its crustal thickness is thick along its

eastern flank and thin in its center ([52]). As in [6], we show sharp changes in crustal thick-

ness that distinguish between the Colorado Plateau and surrounding provinces dominated

by extension, e.g. BR, GP and RGR. [100] showed that low wave speed zones are broad in

the north and narrow in the south. We find a low velocity zone at depths from 100�50 km

that coincides with the southernmost RGR. [96] concluded that the LA RISTRA profile

experiment showed evidence of mantle convection and partial melting in the crust and up-

per mantle. Although we have no conclusive evidence of melting, we see higher velocities

in some regions, which may relate to a cold mantle upwelling (Figures 6) at latitude 34�

and a cold downwelling along the LA RISTRA profile (Figure 8).

We image similar S wave velocities as the LA RISTRA profile, yet we do not have a

bow-tie low velocity anomaly ([34],[136],[143]). The layering seen in Figure 8 may be evi-

dence of delamination. Initially, delamination was proposed as one of the main alternative

mechanisms of lithospheric recycling in continental collision areas ([13]). If thin lithosphere

comes together with high heat flow, this may suggest that the lower crust has been removed

by delamination ([63]). The delamination process leads to considerable thickening of the

crust in areas with weak lithosphere, which can distinguish the Great Plains and RGR

provinces in Figure 7. [9], however, suggested that crustal thinning of the BR was a result

of simple stretching of the original crust rather than delamination. We do find thin crust

under this province, but we cannot conclude whether the origin of such feature is either

delamination or simply stretching of the crust.
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2.9.3 The Jemez Upwelling and the Southern RGR Anomaly

The Jemez lineament, an alignment of volcanic centers that extends about 800 km (Fig-

ure 2) ([3], [37]), represents the most representative signature of primary volcanism in the

region of the Rio Grande Rift ([122]). The Jemez lineament formed from the Miocene to

Holocene in which is thought to be a reactivated Precambrian structure ([3], [37]). Using

the results of a reconnaissance experiment of lateral variation for P-wave velocities, [122]

identified a low velocity zone along the Jemez lineament in the depth range from 50� 200

km and interpreted the zone to be partial melt. However, the resolution of their model lies

beneath the ⇠200-km-long segment from Mount Taylor through the Jemez volcanic center,

and up to 160 km depth only. This feature shows up in other tomography models in the

region, where a low velocity anomaly is present until about 200 � 300 km in depth ([34];

[81]; [131]).

We identify the same low velocity zone to a 200 km depth. With a 3D perspective, we

link the low velocity zone to an upwelling sheet of hot (low velocity) material, which we

term the Jemez upwelling, beneath the Jemez lineament originating beneath the Colorado

Plateau, and that likely feeds the volcanic centers in the region (Figure 7). This feature

may be linked to the southern RGR low velocity anomaly (Figure 6) at 100 km depth along

the axis of the rift. However, the southern RGR anomaly appears to be narrower than the

Jemez upwelling and may extend up to 150 km. [81] suggests that strong upwelling impacts

the base of the lithosphere at an oblique angle east of the Colorado Plateau and directly

below the RGR. The planar body parallels the Jemez lineament and is oriented perpendic-

ular to the LA RISTRA transect (C-C’).

Along the C-C’ transect, our results are similar to previous images for the LA RISTRA

experiment, where a significant transition between high velocities beneath the Colorado

Plateau and the Great Plains is revealed as well as a broad low velocity zone beneath the

RGR ([34]; [143]). Furthermore, our 3D images allow us to define the dimensions of the

low velocity zone in our region and to link this Jemez upwelling to the Jemez lineament.

However, due to the northern extent of our model, we do not know if the low velocity zone
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is persistent beneath the Colorado Plateau ([34]; [136]).

The Socorro Magma Body (SMB) within central RGR is one of the largest active in-

trusions in the Earth’s continental crust, and is associated to steady central uplift ([89]).

Also, the SMB has been linked to strong magma influence, e.g. di↵usion of fluid moving

upward from depth, due to an underlying low-velocity molten layer. [100] associated this

low velocity zone to a possible combination of partial melt, temperature and compositional

variations. [102] suggested that there is not a strong direct magmatic influence in the

seismic activity of the SMB, and that this activity is more prone to be associated with

characteristics of a continental rift, like preexisting highly fractured crust. Furthermore,

the strongest velocity variations located in the upper 200 � 300 km of mantle beneath

the magmatically and tectonically active Rio Grande Rift and Basin and Range show a

clear relation between tectonic province and mantle velocity beneath the stable Colorado

Plateau and Great Plains. This distinction coincides with that presented by [34] and [143].

The RGR can clearly been seen as a strong crustal feature in our models (Figure 4), while

the two major low velocity zones in our model (the Jemez Lineament and the southern

RGR anomaly) highlight an upper mantle process that may be there result of small-scale

convection (Figures 5�8). However, because a deep mantle upwelling underneath the RGR

does not appear, the mechanism for rift formation remains ambiguous.

2.10 Conclusions

We present a new model of crustal and upper mantle structure beneath the southern RGR.

Separate joint inversions were performed for 147 Earthscope USArray and LA RISTRA

stations. We create a generic framework that connects a constrained optimization joint

inversion algorithm with a Bayesian interpolation scheme for high-resolution imaging of

Earth structure. Furthermore, this scheme e�ciently provides a robust alternative to ex-

tend simultaneous independently created 1D S wave velocity models, to produce 3D images

of Earths structure compared to full 3D inversions. Our framework generates a continu-
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ous and smooth 3D velocity model of the Rift system, revealing the complexities of the

southern RGR and helping us to better characterize its crustal and upper mantle velocity

structure. We present evidence of crustal thinning in the center of the Rift, and no evidence

of a deep mantle upwelling driving the RGR ([34]). We identify the boundaries between

the provinces of B&R, CP, GP and RGR, and an upwelling sheet of low velocity material,

that we term the Jemez upwelling. We also identify a southern RGR anomaly that may be

connected with the Jemez upwelling. The resulting 3D models show a thin, lower velocity

lower crust along the southern east portion of the Rio Grande Rift, plus a low velocity

lithosphere underneath the Colorado Plateau and Basin and Range province which may

be attributed to high crustal temperatures ([11]). We have no evidence of a deep mantle

plume that drives the current rifting process, and all velocity anomalies are shallower than

200 km.
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Chapter 3

Construction of shear wave models by

applying multi-objective optimization

to multiple geophysical datasets

For Texas, our main purpose is to obtain a better understanding of the Earth’s tectonic pro-

cesses within the region, which requires us to analyze the Earth structure. We expand on

a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to

characterize a one-dimensional Earth’s structure of Texas with the use of multiple geophys-

ical data sets. We employed a joint inversion scheme using multiple geophysical datasets

for the sole purpose of obtaining a three-dimensional velocity structure of Texas in order to

identify an ancient rift system within Texas. In particular, we use data from the USArray,

which is part of the EarthScope experiment, a 15-year program to place a dense network

of permanent and portable seismographs across the continental United States. Utilizing

the USArray data has provided us with the ability to image the crust and upper mantle

structure of Texas. We simultaneously inverted multiple datasets from USArray data, to

help us to better obtain an estimate of the true Earth structure model. We prove through

numerical and experimental testing that our Multi-Objective Optimization (MOP) scheme

performs inversion in a more robust, and flexible matter than traditional inversion ap-

proaches. The work done in Chapter 3 is based on the following publication:

Thompson, L., A. A. Velasco, and V. Kreinovich.: Construction of shear wave models

by applying multi-objective optimization to multiple geophysical data sets. Handbook of

Springer Proceedings in Mathematics & Statistics (PROMS), Springer, Current Trends in
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Applied Mathematical Science (2015), (accepted).

3.1 Introduction

For this paper, we propose to combine multiple geophysical datasets for the purpose of

assisting us in better determining physical properties of the Earth structure. By simulta-

neously inverting multiple datasets, we obtain a better estimate of the true Earth structure.

In general, there are two reasons why the estimated Earth structure model di↵ers from the

true Earth structure. The first reason is the inherent non-uniqueness of the inverse prob-

lem that causes several (usually infinitely many) models to satisfy the data. The second

reason is that real geophysical data is always a↵ected by noise, which introduces error

associated with the estimation of the Earth structure model after inversion. By jointly

inverting multiple geophysical data sets, we reduce the inherent non-uniqueness typical

for the geophysical datasets (e.g., receiver functions, surface wave dispersion, teleseismic

delay travel times, and gravity) individually [133],[25]. For this research, we use receiver

functions, surface wave dispersion measurements, and P-wave travel times to characterize

the crust and upper mantle structure of the Texas region.

In general, geophysical data sets such as receiver functions are suited to constrain the

depth of discontinuities and are sensitive to relative changes in S-wave velocities in di↵erent

layers. Surface waves measurements on the other hand, constrain the absolute shear ve-

locities between discontinuities whereas receiver functions are unable to do that [117],[51],

[72], [116], [124]. Seismic first-arrival travel times and gravity data are complementary to

each other because one can recover the causative slowness and density distributions of the

Earth structure [62]. The complementary information provided by the following datasets,

reduces the inherent ambiguity or non-uniquess of performing inversion (e.g., [40], [25], [77],

[78], [66], [14]). By jointly inverting seismic data along with gravity data, we will be able

to overcome the di�culties of non-uniqueness and be able to facilitate the construction of

the true Earth model.
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When we process a single data set (e.g., Surface Wave Dispersion), we use the least

squares method to find the best-fit model. For multiple data sets (e.g., Surface Wave

Dispersion and Receiver Functions), if we knew the variance (uncertainty of data) of the

di↵erent measurements of the multiple data sets, we could still be able to use the least

squares approach to finding the model space. In practice, we only have an approximate

knowledge of the variances. So, instead of producing a single model, we want to generate

several models corresponding to di↵erent possible variances. Once several models corre-

sponding to di↵erent possible variances are computed, we can then proceed to select the

most geophysical meaningful model from the Pareto Front [57]. The reason we will use

an optimization technique is to find the best possible solution for nonlinear geophysics

inverse problem. For example, in geophysics, most inverse problems require finding some

minimization and that is why we will use an optimization technique called MultiObjec-

tive Optimization Problem (MOP). The MOP technique generates several possible models.

This is what sets it apart from other various joint inversion techniques. We will be able to

select the final solution from a population of alternative solutions from the model space.

Such methods are described in [107],[108], [57].

There are two types of seismic waves that travel through the Earth: the body waves and

the surface waves. Both types of waves give us di↵erent sensitivities and information about

the Earth structure, since they are sampling the interior and surface of the medium with

di↵erent velocities and directions. The information collected from the body waves travels

deeper into the Earth and translates into teleseismic P-wave receiver functions. In order

to obtain information about the Earth surface, surface waves are analyzed, in our case, by

means of surface waves dispersion. On one hand we have receiver functions, which resolve

discontinuities (impedance contrasts) in seismic velocities, and provide good measurement

of crustal thickness, without providing a good average of shear wave velocity. On the other

hand, we have surface (Love and Rayleigh) waves whose energy is concentrated near the

Earth’s surface, and provide good average of absolute shear wave velocity, without a good

shear-wave velocity contrasts in layered structures [51], [72], [116], [124], [22], [84]. There-
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fore these two data sets can be considered as complimentary and consistent, as long as we

sample the same medium. Hence, we expect a mutually consistent estimate of the Earth’s

structure.Since both data sets are sensitive to shear wave velocity structure [51], we can

assume a forward operator F depending nonlinearly on our model parameter x 2 Rn that

represents the di↵erent shear velocities of a half space with n horizontal layers (a standard

way of modeling Earth’s structure). In the next subsections we explain in more detail

the nonlinear relationship with respect to shear wave velocities of this operator and the

techniques used to compute each synthetic dataset.

3.2 Receiver Functions

A receiver function is simply a time series representation of the Earth’s response relative

to an incoming P-wave propagating near a recording station. Positive or negative spike

amplitudes represent positive or negative seismic velocity contrast. A receiver function

technique can model the structure of the earth by using seismograms from three component

(vertical, north, and east) seismic stations from teleseismic earthquakes. The receiver

function technique takes advantage of the fact that part of the energy of seismic P waves is

converted into S waves at discontinuities along the ray path [29], [9] and has been utilized

in many studies (e.g., [143], [6], [143], [42]). For data collection and processing, we use

the Standing Order for Data (SOD) [87], [6] to request three component seismograms for

P-wave arrivals and for events with a minimum magnitude 5.5, depth in the range of 1600

km, and an epicentral distance ranging from 30� to 95� (e.g., [6]).

Receiver functions were first applied in the late 1970s at solitary stations to obtain local

one-dimensional structural estimates [60]. Since then, there was an increase in the number

of stations deployed seismic experiments. It is now possible to generate detailed two or

three-dimensional images of structures, such as the moho and upper mantle transition zone

discontinuities near 410 km and 670 km depth (e.g., [139]).

Receiver functions are derived using deconvolution, a mathematical method used to
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filter a signal and isolate the superimposed harmonic waves. Specially, receiver functions

are calculated by deconvolving the vertical component of a seismogram from the radial

component, resulting in the identification of converted phases where there is an impedance

contrast (crustal-mantle boundary) [116].

3.3 Receiver function stacking

We used the receiver function stacking technique introduced by [151], which estimates the

crustal thickness and a V
p

/V
s

ratio based on the radial receiver function. This technique

is the standard approach used by EARS. Assuming that no lateral velocity heterogeneities

exist, the time separation between the Ps converted wave and the direct P-wave obtained

from receiver functions (t
Ps

) can then be used to estimate crustal thickness (H), given

the average crustal velocities V
p

and a V
p

/V
s

ratio (), and the constant ray parameter

p of the incident wave (e.g., [38]). The trade-o↵ between the thickness and the crustal

velocities presents an ambiguity that can be reduced by using the later multiple phases

tp
p

p
s

and tp
s

p
s

+ p
p

s
s

, which provide additional constraints to both V
p

/V
s

and the crustal

thickness (e.g., [38], [151]). Using and stacking multiple events helps to increase the signal-

to-noise ratio (SNR), which may be caused by background noise, scattering from crustal

heterogeneities, and P-to-S multiple conversions from other velocity discontinuities [70].The

H- domain stacking weights each phase and plots the stacked phases as a gridded image

s(H,),which reaches a maximum when all three phases (tp
s

, tp
p

p
s

, tp
s

p
s

+p
p

s
s

) are stacked

coherently with the correct H and  [151]. The main advantage of this grid-search based

technique is that (1) large amounts of receiver functions can be processed without the

need of picking P
s

arrival times, and (2) the stacking results in an enhancement of the

signal/noise ratio and a suppression of lateral variations in the vicinity of the recording

station [70]. We will use this technique to derive an average crustal model including H and

V
p

/V
s

(). An example of this technique is shown in Figure 2 for one of the Earthscope

USArray stations, 219A. The dark dot with the white circle around the dot represents the
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Figure 3.1: (Left) Illustration of a simplified ray diagram, which identifies the Ps,
converted phases, which comprise the receiver function for a single layer.
(Right) Vertical and radial seismograms and the corresponding receiver
function resulting from the deconvolution of the vertical component
from the radial component.
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possible solution in H and V
p

/V
s

space (Figure 2).

3.4 Surface Wave Dispersion

Surface waves in general di↵er from body waves in many respects they travel slower, lower

frequencies, largest amplitudes, and their velocities are in fact dependent on frequency

[116]. The surface wave velocities vary with respect to depth being sampled by each period

of the surface wave. The sampling by each period of the surface wave is known as dis-

persion [121]. Valuable information can be inferred by measuring surface wave dispersion

because it will allow you to be able to better understand the Earth’s crustal and mantle

velocity structure [84], [121], [61]. In particular, Love and Rayleigh wave group dispersion

observations generally account for average velocity structure as a function of depth ([51],

[72]). The dispersion curves for surface waves are extracted from station records of three

component seismograms for di↵erent frequencies and distances, by using reduction algo-

rithms that rely on spectral analysis techniques. The important fact here is that, based on

Rayleigh’s principle, surface wave velocities are more sensitive to S wave velocity, although

they are also theoretically sensitive to P wave velocity and density. The Rayleigh’s principle

states that the phase velocity perturbation, denoted by �c

c

, can be viewed as a function of

(K
↵

, K
�

, K
⇢

), the sensitivity coe�cients for P wave velocity, S wave velocity and density,

respectively, i.e.
�c(T )

c(T )
=

Z ✓
K

↵

�↵(z)

↵(z)
+K

�

��(z)

�(z)
+K

⇢

�⇢(z)

⇢(z)

◆
(3.4.1)

where T is the period and z is the depth. By investigating sensitivity function variation

in depth, the relative contribution of each property to dispersion can be shown. This

subject is beyond the scope of our work, thus we just mention here that such analysis

allows geophysicists to show that the relative contribution of P wave velocity, and density

to dispersion is smaller than the one for S wave velocity [51]. This is, surface wave dispersion

is much more sensitive with respect to S wave velocity, and therefore we have established

the dependence of this data set on shear wave velocity.
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Figure 3.2: This is a receiver function stack of station 219A, Vp/Vs vs H (km).
The black dot with the white circle around it represents the preferred
value. Note the multiple shaded regions might result in a poor choice
of crustal thickness.
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Figure 3.3: Surface wave dispersion curves (Love & Rayleigh) for station ABTX
using real data.
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3.5 Delay Travel Times

The traveltime T between a source and receiver along a ray L is given in integral form for

a velocity field as

T =

Z

L

ds

v(s)
(3.5.1)

where s is the position vector in 2D or 3D media. Travel times are considered a nonlinear

inverse problem given the relationship between the measured data (travel times) and the

unknown model parameters (the velocity field). However, by transforming variables to use

slowness, the reciprocal of velocity, instead of velocity as the unknown, a seemingly linear

inversion problem is created:

Z

L

�u(s)ds = �T = T
obs

� T
pred

(3.5.2)

However, the ray is also dependent on the velocity (or slowness) model, thus making the

inverse problem nonlinear regardless of what form of model variable or parameterization is

used. If the medium is subdivided into blocks, the path length l
j

in the j-th block and can

be discretize to

�T =
X

j

l
j

�u
j

(3.5.3)

The model can be parameterized any number of ways using velocity or slowness, and cells,

nodes, or splines, since the problems nonlinearity must be dealt with regardless of the

parameterization. Most often a linearized gradient approach is applied in which a starting

model is used and both the model and rays are updated over a series of iterations with the

hope that there will be convergence to an acceptable model (the final model). The model is

almost always discretized using cells, nodes, or other interpolating functions; in the latter

two cases, the discrete model parameters are the coe�cients of the interpolating functions.

For the formulation of travel times for a tomography problem, the model is parameterized

using constant-slowness cells, in which case the equation for the i-th data becomes

�T
i

=
X

j

l
ij

�u
j

(3.5.4)
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where l
ij

is the length of the i-th ray in the j-th model cell and �u
j

is the slowness in the

j-th cell. In this case the path length of each ray in a block, l
ij

is the partial derivative,

@T
i

/@u
j

of the travel time with respect to the slowness of that block [124].

3.6 Gravity Anomalies

In geophysics gravity anomalies are generally defined as the di↵erence between observed

gravity field and the field of a reference model. Depending on the reference gravity model,

two di↵erent types of anomaly variations are considered: gravity anomalies and gravity

disturbances. The geodetic gravity anomaly is defined as the di↵erence between gravity on

the geoid and normal gravity on the reference ellipsoid [45]. On the other hand, the gravity

disturbance is defined as the di↵erence of the fields at the same point on the reference

ellipisoid. It has been demonstrated that the gravity disturbances are more appropriate

for geophysical purposes (e.g., [41]). In any case, its necessary to take into account the

di↵erence in the interpretation.

The observed gravity anomalies reflect the e↵ect of density variations relative to the ho-

mogeneous reference model. Interpretation of the gravity anomalies implies an estimation

of the density heterogeneities. The density model should reproduce the observed gravity

field, taking into account that the observations may be a↵ected by measurement errors.

Density heterogeneity of the Earth, associated with thermal and compositional variations

or with deflected boundaries separating layers of di↵erent density, is one of the main factors

that control dynamic processes and deformations at both shallow and deep levels. There-

fore, interpretation of the gravity anomalies or gravity modeling is one of the principal

methods, which help to understand the nature and origin of the tectonic processes and the

Earths dynamics.
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Figure 3.4: (Left) Halfspace showing di↵erent P and S waves created within the
Earth. (Right) Di↵erent seismic phases within the Earth. Travel times
are from the Array Network Facility (ANF) seismic catalog.
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Figure 3.5: Bouguer gravity anomaly map of the Texas region and surrounding
area. High amplitude gravity anomaly observed in Texas.
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3.7 Forward Problem

If we know the layered shear velocity distribution x = (x
1

, . . . , x
n

) at n di↵erent horizontal

layers, then we can evaluate the measured quantities y = (y
1

, . . . , y
m

) (e.g., the travel times)

by applying an appropriate nonlinear operator F (x) that uses the velocities x to predict

the Earth’s response y = F (x);

F (x) = (F
1

(x), . . . , F
m

(x)) 2 Rm, x = (x
1

, . . . , x
n

) 2 Rn (m � n) (3.7.1)

The operator F relates the data space and the model space. In other words, if we know the

velocity model x, then we can predict the Earths response based on the velocity model.

3.8 Inverse Problem

Given an observed data vector y 2 Rm, we want to find the unknown model x such that

F (x) approximates y as much as possible. For each specific type T of observations, this

means that we are minimizing

min
x

��F T (x)� yT
��2 = min

x

�
F T

i

(x)� yT
i

�
2

(3.8.1)

to match measurements of di↵erent types, researchers traditionally use weighted non-linear

least squares method (LSQ). For example, to simultaneously match the teleseismic receiver

functions (RF), surface wave dispersion velocities (SW), travel times (TT), and gravity

(GR), we minimize min
x

J , where

J = w2

RF

��FRF (x)� yRF

��2 + w2

SW

��F SW (x)� ySW
��2 + w2

TT

��F TT (x)� yTT

��2 +

w2

GR

��FGR(x)� yGR

��2 (3.8.2)

This minimization problem can be reformulated as

min
x

kF (x)� yk2 (3.8.3)
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where

F (x) = W

0

BBBBBB@

F SW (x)

FRF (x)

F TT (x)

FGR(x)

1

CCCCCCA
2 Rm,

y = W

0

BBBBBB@

ySW

yRF

yTT

yGR

1

CCCCCCA
2 Rn

and

W = diag(w
i

), w
i

=

r
⌘
1

�2

i

p
, i = 1, . . . , p, w

i

=

r
⌘
2

�2

i

q
, i = p+ 1, . . . , p+ q,

w
i

=

r
⌘
3

�2

i

r
i = p+ q + 1, . . . , p+ q + r, (3.8.4)

w
i

=

s
1� ⌘

1

� ⌘
2

� ⌘
3

�2

i

s
, i = p+ q + r + 1, . . . ,m = p+ q + r + s

with W a weighted diagonal matrix used to equalize the contribution of each dataset with

respect to physical units and number of data points, ⌘
i

2 [0, 1] are influence parameters

that measures the reliability of each dataset used for the inversion, �2

i

is the approximate

standard deviation of each point, and p, q, r and s are the number of RF, SW, TT, and

GR observations [121].

3.9 Need for mult-objective optimization

In practice, we do not know the exact values of the influence parameters. For di↵erent

values of the influence parameters, we get, in general, di↵erent velocity distributions x;

some of these velocity models are geophysically meaningful, some are not (e.g., some mod-

els x predict higher velocities in the crust and lower velocities in the mantle contrary to

geophysics).
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Traditionally, researchers avoid non-physical non-smooth velocity models by adding a

regularization term �||Lx||2 to the minimized function [128]. The problem with this term

is that it is not clear how to select �, and di↵erent values of � lead to di↵erent solutions;

see, e.g., [44] and [132].

In this work, instead of using regularization, we explicitly formulate constraints that

need to be satisfied, for example, the desired smoothness can be described as a bound on

|x
i

� x
j

|  � on the di↵erence between velocities x
i

and x
j

at nearby locations. Then, we

find the model x for which J(x) is the smallest under these constraints. Additionally, we

include bounds a  x  b on the velocities at di↵erent depths. In geophysical applications,

it is crucial to keep the physical parameters within appropriate bounds.

So, instead of selecting a single combination of influence parameters (and thus, of

weights), we propose to use multi-objective optimization (MOP); namely, we generate all

possible models x corresponding to di↵erent combinations of weights, and then we use one

of the MOP criteria to select the most promising model [107],[108], [57].

In this case, we want to mimimize the four criteria f
1

(x) = ||FRF (x)� yRF ||2, f
2

(x) =

||F SW (x) � ySW ||2, f
3

(x) = ||F TT (x) � yTT ||2, f
4

(x) = ||FGR(x) � yGR||2. First, we find

the Pareto optimal set P ⇤, i.e., the set of all feasible solutions x for which there is no other

feasible solution x0 which is better with respect to all criteria f
1

(x0) < f
1

(x), . . . , f
k

(x0) <

f
k

(x).

Definition: (Pareto Optimal Set) For a given multi-objective problem

F (x) = (f
1

(x), . . . , f
k

(x)), the Pareto Optimal Set P ⇤ ,, is defined as:

P , {x 2 ⌦|¬9x0 2 ⌦(F (x0)  F (x))} (3.9.1)

It is known that elements of the Pareto set can be obtained by solving the one-objective

(scalar) optimization problem.

min
x2X

f(x) =
kX

i=1

w
i

f
i

(x) (3.9.2)
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Figure 3.6: Illustration of the solution set or Pareto front, which is, defined as the
weights times the perspective objective functions.

61



where w = (w
1

, . . . , w
k

) � 0 is the vector of weighting coe�cients assigned prior to the

solution of the problem. So, in our computations, we try all possible combinations of

weights, and we find all solutions x corresponding to di↵erent combinations. For each

criterion f
i

, we then find the smallest value fmin

i

and the largest value fmax

i

.The smallest

values form an ideal point fmin = (fmin

1

, . . . , fmin

4

). We then select a solution x which is the

closest to this ideal point. Specifically, we normalize each di↵erences f
i

(x)� fmin

i

(x) to the

interval (0,1) by dividing it by fmax

i

(x)� fmin

i

(x), and then we minimize the corresponding

normalized distance. In other terms, we select a solution x for which the distance

d2(fmin, f(x)) =
kX

i=1

✓
f
i

(x)� fmin

i

(x)

fmax

i

(x)� fmin

i

(x)

◆
2

(3.9.3)

3.10 Numerical Algorithm

First, we use a first order Taylor approximation of the operator F around some suitable

model x
k

:

F (x) ⇠= F (x
k

) + F 0(x
k

)�x = F (x
k

) + F 0(x
k

)(x� x
k

), (3.10.1)

where F 0(x
k

) is the matrix formed by the partial derivatives of F . Therefore, we rewrite

the problem (9) as

min
x

1

2
kF 0(x

k

)x+ r(x
k

)k2

s.t. g(x
k

) � 0 (3.10.2)

g(x
k

) =

0

@ x
k

� a

b� x
k

1

A

where r(x
k

) = F (x
k

) � y � F 0(x
k

)x
k

, and g(x
k

) is a vector of constraints, including con-

straints x
i

� a
i

� 0 and b
i

� x
i

� 0 that describe the bounds a
i

 x
i

 b
i

on velocities x
i

at di↵erent layers.
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3.11 Primal Dual Interior-Point Method

To implement the Primal Dual Interior-Point method ([121];[83]), we first rewrite our prob-

lem in a standard form as follows:

min
x

1

2
kF 0(x

k

)x+ r(x
k

)k2

s.t. g(x
k

)� s = 0 (3.11.1)

s � 0

where s 2 R2n is a slack variable. Then we define the Lagrange function associated to

problem (16) as:

l(x
k

, z, s, w) =
1

2
||F 0(x

k

)x+ r(x
k

)||2 � (g(x
k

)� s)T z � sTw (3.11.2)

with the Lagrangian multipliers z, w 2 R2n, (z, w) � 0. For a given perturbation parameter

µ > 0, the perturbed Karush-Kuhn-Tucker (KKT) or necessary conditions are given by:

F̂ (x
k

, z, s, w) =

0

BBBBBB@

F 0(x
k

)T (F 0(x
k

)x+ r(x
k

))�rgT (x
k

)z

g(x
k

)� s

z � w

SWe� µe

1

CCCCCCA
= 0 (18)

where

F̂ : Rn+2n+2n �! Rn+2n+2n S = diag(s
1

, . . . , s
2n

), W = diag(w
1

, . . . , w
2n

)

and e = (1, . . . , 1) 2 R2n. It is easy to see that z = w, hence the perturbed KKT system

(18) is rewritten as

F̂ (x, z, s, w) =

0

BBB@

F 0(x
k

)T (F 0(x
k

)x+ r(x
k

))�rgT (x
k

)z

g(x
k

)� s

SZe� µe

1

CCCA
= 0 (19)
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thus the Jacobian associated to (19) is then computed as

F 0

0

BBB@

x

z

s

1

CCCA
=

2

6664

F 0(x
k

)TF 0(x
k

) �rgT (x
k

) 0
nxn

rg(x
k

) 0
nxm

�I
mxm

0
mxn

S Z

3

7775

2

6664

�x

�z

�s

3

7775
= �

2

6664

r
x

l(x, z, s)

g(x
k

)� s

SZe� µe

3

7775
(20)

System (20) can be reduced further by eliminating the third block of equations as

follows. From the last block of equation in (20) we have

S�z + Z�s = �SZe+ µe,

therefore

Z�s = �SZe+ µe� S�z

�s = �s+ µZ�1e� Z�1S�z,

and then

rgT (x
k

)�x��s = rgT (x
k

)�x+ s� µZ�1e+ Z�1e+ Z�1S�z = �rgT (x
k

)x+ s

rgT (x
k

)�x+ Z�1S�z = µZ�1e� g(x
k

)

which allow us to write the reduced linear system

2

4�F 0(x
k

)TF 0(x
k

) rgT (x
k

)

rg(x
k

) Z�1S

3

5

2

4�x

�z

3

5 =

2

4 r
x

l(x, z, s)

Z�1µe� g(x
k

)

3

5 (21)

3.12 Conclusion

In summary, for this study we propose to utilize the MOP technique to perform joint

inversion of multiple data sets (Receiver functions and Surface Wave Dispersion). We will

incorporate di↵erent weights in the MOP inversion scheme in order to map the Pareto

Set (Solution Space) of receiver functions and surface wave dispersion measurements. We

used the MOP technique to help characterize the crust and upper mantle of an ancient rift
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Figure 3.7: 3D shear wave model utilizing three geophysical datasets using MOP
technique. Blue represents high velocities & red represents low veloci-
ties.
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system in Texas using seismic data from USArray and Earthscope Network. We will extend

the Primal Dual Interior Point Method (PDIP) algorithm with the MOP scheme in order

to obtain high-resolution 3D imagery of Texas using teleseismic receiver functions, surface

wave dispersion measurements, delay travel times, and gravity. We chose this optimization

approach because we want to find the best possible solution for our nonlinear geophysics

inverse problem. In geophysics, most inversion problems require finding some minimization.

The optimization technique that we chose to solve our non-linear inverse problem requires

the search of the global minimum and this technique will be able to define the entire solution

based from using di↵erent weights to map the Pareto Set. From the Pareto Set, the MOP

technique performs a direct search method that basically selects the final solution from a

set of alternative solutions from the model space [107],[108], [57]. For future work, we plan

to incorporate gravity into our 3D model to be able to obtain a more constrained earth

structure model of Texas, which will allow us to help answer questions such as if the rift

system is still actively deforming and how does the rift influence the evolution of adjacent

areas within the North American Plate.
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Chapter 4

A Constrained Multi-Objective

Optimization Framework for Joint

Inversion

Di↵erent geophysical data sets such as receiver functions, surface wave dispersion measure-

ments, and first arrival travel times, provide complementary information about the Earth

structure. To utilize all this information, it is desirable to perform a joint inversion, i.e.,

to use all these datasets when determining the Earth structure. In the ideal case, when we

know the variance of each measurement, we can use the usual Least Squares approach to

solve the joint inversion problem. In practice, we only have an approximate knowledge of

these variances. As a result, if a geophysical feature appears in a solution corresponding to

these approximate values of variances, there is no guarantee that this feature will still be

visible if we use the actual (somewhat di↵erent) variances.

To make the joint inversion process more robust, it is therefore desirable to repeat-

edly solve the joint inversion problem with di↵erent possible combinations of variances.

From the mathematical viewpoint, such solutions form a Pareto front of the corresponding

multi-objective optimization problem. If a certain geological feature is visible in all these

solutions, then we can be confident that this feature is also present in the actual solution

corresponding to the actual (unknown) values of the variances – i.e., that it is the feature

of the actual Earth structure.

In Chapter 4, we describe the corresponding constrained multi-objective optimization

framework for multiple geophysical data sets. Chapter 4 is based on the work done in the
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following publication:

Thompson, L., A. A. Velasco, and V. Kreinovich.: A constrained multi-objective optimiza-

tion framework for multiple geophysical datasets, Journal of Mathematical Geosciences

(2015), (in review).

4.1 Introduction

In this chapter, we describe how to combine multiple geophysical datasets for the purpose

of assisting in better determining physical properties of the Earth structure. The need for

combining di↵erent datasets comes from the fact that di↵erent datasets provide comple-

mentary information about the Earth structure. By jointly inverting multiple geophysical

datasets, we combine these complementary pieces of information and thus, we get a more

accurate description of the Earth structure; see, e.g., ([133], [51], [117], [25], [72], [116],

[124]).

Specifically, we combine receiver functions, surface wave dispersion measurements, and

P -wave travel times. The need to use di↵erent datasets comes from the fact that there are

two types of seismic waves that travel through the Earth: the body waves and the surface

waves. Both types of waves provide di↵erent sensitivities and information about the Earth

structure, since they are sampling, correspondingly, the interior and surface of the Earth.

The information collected from the body waves travels deeper into the Earth and translates

into teleseismic P -wave receiver functions. In order to obtain information about the Earth

surface, surface waves are analyzed, in our case, by means of surface waves dispersion.

Receiver functions resolve discontinuities (impedance contrasts) in seismic velocities, and

provide good measurement of crustal thickness, without providing a good average of shear

wave velocity. On the other hand, we have surface (Love and Rayleigh) waves whose en-

ergy is concentrated near the Earth’s surface, and provide good average of absolute shear

wave velocity, without a good shear-wave velocity contrasts in layered structures ([51], [72],

[116], [124], [22], [84]). Therefore these two data sets provide complementary information
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about the Earth structure. Seismic first-arrival travel times are complementary to the other

datasets because the travel time enable us to recover the causative slowness of the Earth

structure ([62]).

For each dataset, we usually know the relative variance (uncertainty of data) of di↵er-

ent measurement results from this dataset, and thus, we can use the Least Squares method

to find the corresponding Earth model. For multiple datasets, we can sometimes still use

the Least Squares Method to process all these datasets – provided that we know the vari-

ances of di↵erent measurements from di↵erent datasets. In practice, however, we usually

only have an approximate knowledge of these variances. So, instead of producing a single

model, several models corresponding to di↵erent possible variances are generated. If all

these models – corresponding to di↵erent possible values of variances – contain a certain

geophysical feature, then we can be certain that this feature is also present in the actual

Earth model (which corresponds to the actual (unknown) values of the variances).

From the mathematical viewpoint, the task of computing all these models is equivalent

to computing the Pareto front of the corresponding Multi-Objective Optimization problem

[57], where di↵erent objective functions correspond to di↵erent datasets.

In addition to producing all these models, it is also desirable to produce a “typical”

model, so that we only look for features which are present on this typical model. In this

paper, we use methods for selecting such a typical model as described in [107], [108], [57].

This paper has the following structure. In Section 2, we describe, in detail, the need

for multi-objective optimization. In Section 3, we show how to solve the corresponding

optimization problems. In Section 4, we briefly describe the corresponding geophysical

datasets. The results of applying multi-objective optimization technique to these datasets

are shown and discussed in Section 5. Finally, Section 6 contains conclusions.
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4.2 Need for Multi-Objective Optimization

4.2.1 Inverse Problems: Brief Reminder

In many real-life situations, we are interested in the values of the quantities x
1

, x
2

, . . . ,

which are di�cult (or even impossible) to measure directly. For example, in geophysics,

one of our main objectives is to find the shear velocities x
i

at di↵erent 3-D points i (i.e.,

at di↵erent depths and at di↵erent geographic locations). To find these values, we measure

easier-to-measure quantities y
1

, y
2

, etc., which are related to x = (x
1

, . . . , x
n

) by a known

relation y = F (x), and then use the measured quantities y = (y
1

, . . . , y
m

) to find the desired

values x.

In particular, in geophysics, to find shear velocities x
i

, we can calculate the teleseismic

receiver functions yRF , surface wave dispersion velocities ySW , travel times yTT , etc. For

each of these types of data, if we know the velocity model x, then we can predict the Earth’s

response by using the corresponding (known) operator F : yRF = FRF (x), ySW = F SW (x),

yTT = F TT (x), etc.

Measurements are never absolutely accurate, there is always some measurement inac-

curacy, there is always some level of noise preventing us from measuring the corresponding

quantities exactly. A usual way to estimate parameters in the presence of noise is to use

the Least Squares method, i.e., to find the values x that minimize the expression

mX

i=1

(F
i

(x)� y
i

)2

�2

i

, (4.2.1)

where �
i

is the standard deviation of the noise (measurement inaccuracy) of the i-th mea-

surement.

In some cases, all the available data points come from measurements of the same type,

obtained by using the same methodology and similar instrumentation. For example, we

may only have travel times, or only surface wave dispersion velocities. In such cases, it

is reasonable to assume that all these measured values have the same accuracy, i.e., that

�
i

= const. Under this assumption, minimizing the expression (4.2.1) is equivalent to
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minimizing the sum of the squares

kF (x)� yk2 def

=
mX

i=1

(F
i

(x)� y
i

)2. (4.2.2)

4.2.2 Need to Take Constraints into Account

Sometimes, the models x obtained by an appropriate minimization are not physically mean-

ingful. For example, in geophysics, some models x predict higher velocities in the crust

and lower velocities in the mantle, contrary to known geophysical models. In other cases,

when we expect a smooth dependence on a signal on time, the reconstructed signal x can

exhibit abrupt non-physical changes.

To avoid such non-physical solutions, it is desirable to explicitly take into account

the corresponding constraints. For example, in most practical problems, there are known

physical bounds on the values of the quantities x
i

. In particular, in geophysics, for each

depth, we can approximate the lower bound and the upper bound on possible values of

shear velocity x
i

at this depth.

In precise terms, for every i, we know the bounds a
i

and b
i

such that a
i

 x
i

 b
i

.

Restrictions on smoothness can be described as known bounds �
ij

on the di↵erence

between the values x
i

and x
j

for nearby points of time or at nearby spatial locations:

��  x
i

� x
j

 �
ij

.

Under the corresponding constraints, the optimization problem (4.2.2) takes the form

min
x

kF (x)� yk2

s.t. g(x) � 0. (4.2.3)

where g(x) is a vector consisting of the corresponding constraints. For example, to describe

bounds a
i

and b
i

on the values x
i

, we use constraints x
i

� a
i

� 0 and b
i

� x
i

� 0.

Constraints corresponding to smoothness can also be expressed in the form g(x) � 0,

with the corresponding components of the vector g(x) having the form �
ij

� (x
i

� x
j

) and

(x
i

� x
j

)� (��
ij

).
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Comment. Traditionally, researchers avoid non-physical non-smooth velocity models by

adding a regularization term �kLxk2 to the minimized function; see, (e.g., [128]). The

problem with this term is that it is not clear how to select �, and di↵erent values of � lead

to di↵erent solutions; see, (e.g., [44],[132]). Because of this problem, in this paper, instead

of using regularization, we explicitly formulate constraints that need to be satisfied. For

example, the desired smoothness is described as a bound on the di↵erences x
i

� x
j

.

4.2.3 Joint Inversion: Idealized Case

As noted earlier, measurements of di↵erent type usually provide complementary informa-

tion and it is, therefore, beneficial to use measurement results of all the types.

When we use measurements of di↵erent types t, t0, etc., then while it is reasonable to

assume that all the measurements i of the same type t have the same standard deviation

�
i

= �t, standard deviations of measurements of di↵erent types are, in general, di↵erent:

�t 6= �t

0
. Let us first consider the idealized case, when we assume that we know the accu-

racy �t of measurements of type t.

In this case, we can still use the Least Squares expression (4.2.1) to find the desired

model x. By grouping together measurements of di↵erent type, we can rewrite the expres-

sion (4.2.1) in the following form:

mX

i=1

(F
i

(x)� y
i

)2

�2

i

=
TX

t=1

X

i2t

(F
i

(x)� y
i

)2

(�t)2
=

TX

t=1

1

(�t)2
·
 
X

i2t

(F
i

(x)� y
i

)2
!

(4.2.4)

where T is the total number of di↵erent types of measurements, and the notation i 2 t

indicates that the i-th measurement is of type t.

We can rewrite this expression as

TX

t=1

c2
t

· kF t(x)� ytk2, (4.2.5)

where c
t

def

=
1

�t

, yt is the list (tuple) consisting of all measurements of type t, and F t(x) is

the list consisting of all the corresponding values F
i

(x).
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To find the desired solution x, we must minimize this expression under the constraint

g(x) � 0.

4.2.4 Reformulation of the Problem

The more measurements of a given type t we have, the larger the contribution of these

measurements to the solution. In general, all the terms
(F

i

(x)� y
i

)2

�2

i

in the sum (4.2.4)

are approximately of the same type, so we can conclude that the joint contribution of all

the measurements of type t is proportional to the number m
t

of all measurement results of

this type.

To compare the importance of measurements of di↵erent types, it is useful to define

relative importance as a ratio of the importance m
t

of this type to the overall value
P
t

0
m

t

0 ,

i.e., as ⌘
t

def

=
m

tP
t

0
m

t

0
. These influence parameters ⌘

t

are non-negative numbers that add up

to 1.

To better understand the minimized expression (4.2.5), it makes sense to show the

explicit dependence on the influence parameters. This can be done, e.g., by making sure

that each term in the new formula is proportional to ⌘
t

; this way we will see that the larger

the influence parameter, the larger the influence of this term. To do that, we replace each

term c2
t

with ⌘
t

· k2

t

. From the condition that c2
t

= ⌘
t

· k2

t

, we conclude that k2

t

=
c2
t

⌘
t

. Since

c
t

=
1

�t

and ⌘
t

=
m

tP
t

0
m

t

0
, we have

k
t

=

s
c2
t

⌘
t

=

s
1

(�t)2 ·m
t

·
sX

t

0

m
t

0 . (4.2.6)

Thus, each term c2
t

= ⌘
t

· k2

t

has the form c2
t

= w2

t

· C, where w
t

def

=
r

⌘
t

(�t)2 ·m
t

and

C
def

=
P
t

0
m

t

0 . So, the minimized expression (4.2.5) takes the form

C ·
TX

t=1

w2

t

· kF t(x)� ytk2. (4.2.7)
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The location of the minimum does not change if we divide all the values of a function by

the same positive coe�cient C. Therefore, minimizing the expression (4.2.7) is equivalent

to minimizing a simpler expression

TX

t=1

w2

t

· kF t(x)� ytk2. (4.2.8)

4.2.5 General Case: A Description

In the previous sections, we considered the ideal case, when we know the exact variance �2

i

of each measurement i. In this case, we can use the usual Least Squares approach to solve

the joint inversion problem.

In practice, we only have an approximate knowledge of these variances. For example,

for each measurement type t, we only know an approximate value e� t of the corresponding

standard deviation �t.

A traditional approach to such situations is to use these approximate values e� t and

solve the corresponding optimization problem. The problem with this approach is that, if

a geophysical features appears in the solution corresponding to these approximate values

of variances, there is no guarantee that this feature will still be visible if we use the actual

(somewhat di↵erent) variances.

It is desirable to separate artifacts that are due to the specific choice of variances from

the phenomena that occur no matter what variances we use. For this purpose, we wish

to repeatedly solve the joint inversion problem with di↵erent possible combinations of

variances. If a certain geological feature is visible in all these solutions, then we can be

confident that this feature is also present in the actual solution corresponding to the actual

(unknown) values of the variances – i.e., that it is the feature of the actual Earth structure.
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4.2.6 General Case: Analysis of the Problem

In the previous sections, we described the need to minimize the expression

TX

t=1

1

(�t)2
· kF t(x)� ytk2 (4.2.9)

under the condition g(x) � 0, where �t are the known standard deviations. We showed

that this equivalent to minimizing the expression (4.2.8), where w
t

=
r

⌘
t

(�t)2 ·m
t

and

⌘
t

=
m

tP
t

0
m

t

0
.

In situations when we only know an approximate value e� t, the traditional approach

would be to use this approximate value, i.e., to minimize the expression

TX

t=1

1

(e� t)2
· kF t(x)� ytk2, (4.2.10)

or, equivalently, to minimize the expression (4.2.8), in which

w
t

=
r

⌘
t

(e� t)2 ·m
t

, (4.2.11)

with the same values ⌘
t

=
m

tP
t

0
m

t

0
of the influence parameters.

As we have mentioned, a more appropriate approach is to minimize expressions (4.2.9)

corresponding to all possible combinations of standard deviations �t. Let us show that:

• each such constraint minimization problem can be equivalently reformulated into the

form (4.2.8) with the weights (4.2.11) if we select di↵erent values of the influence

parameters ⌘
t

> 0, and that

• for each combination of influence parameters ⌘
t

> 0 with
P
t

⌘
t

= 1, there exist values

�t > 0 for which the corresponding optimization problem (4.2.8) is equivalent to the

original optimization problem (4.2.9).

Indeed, for each combination of values �t, let us take

⌘
t

def

=
1

c
· mt

· (e� t)2

(�t)2
,
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where the normalization coe�cient c is chosen as

c
def

=
X

t

m
t

· (e� t)2

(�t)2
.

In this case, ⌘
t

> 0 and
P
t

⌘
t

= 1. For the corresponding weights (4.2.11), we get

w2

t

=
⌘
t

(e� t)2 ·m
t

=
c

(�t)2
. (4.2.12)

Thus, minimizing the expression (4.2.8) is equivalent to minimizing the expression

c ·
TX

t=1

1

(�t)2
· kF t(x)� ytk2,

which, in its turn, is equivalent to minimizing the expression (4.2.9).

Vice versa, for each combination of weights ⌘
t

> 0 for which
P
t

⌘
t

= 1, we can take

�t =
s

m
t

⌘
t

·
P
t

0
m

t

0
· e� t. (4.2.13)

For these standard deviations �t, the expression (4.2.9) takes the form

TX

t=1

(w0
t

)2 · kF t(x)� ytk, (4.2.14)

where we denoted

(w0
t

)2
def

=
X

t

0

m
t

0 · ⌘
t

(e� t)2 ·m
t

. (4.2.15)

From the formula (4.2.11), we conclude that w2

t

=
⌘
t

(e� t)2 ·m
t

and thus, that the for-

mula (4.2.15) takes the form (w0
t

)2 = C · w2

t

, where C
def

=
P
t

0
m

t

0 . Thus, the expression

(4.2.14) takes an equivalent form

C ·
TX

t=1

w2

t

· kF t(x)� ytk, (4.2.16)

and the minimization of this expression is indeed equivalent to minimizing the expression

(4.2.8).

The equivalence is proven.
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Comment. The above analysis holds when we know the approximate values e� t of the

corresponding accuracies �t, but we know no guaranteed bounds on these accuracies. In

some practical situations, in addition to the approximate values e� t, we also know the

bounds �t and � t, for which �t  �t  � t. In this case, instead of all possible values

⌘
t

of the corresponding influence parameter, we only need to consider possible values –

and we can use the above formulas relating ⌘
t

with �t to transform bounds on �t into the

corresponding bounds on ⌘
t

.

4.2.7 General Case: Resulting Optimization Problem

So, we arrive at the following equivalent reformulation of our problem: for all possible

combination of influence factors ⌘
t

> 0 for which
P
t

⌘
t

= 1, we compute the weights

w
t

=
r

⌘
t

(e� t)2 ·m
t

,

and then minimize the expression

TX

t=1

w2

t

· kF t(x)� ytk2

under the corresponding constraints g(x) � 0.

This minimization problem can be reformulated as

min
x

kF (x)� yk2, (4.2.17)

where

F (x) = W

0

BBBBBBBBBBBB@

F 1(x)

F 2(x)

. . .

F t(x)

. . .

F T (x)

1

CCCCCCCCCCCCA

2 Rm, y = W

0

BBBBBBBBBBBB@

y1

y2

. . .

yt

. . .

yT

1

CCCCCCCCCCCCA

2 Rn
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and W = diag(w
t

) is a diagonal matrix whose elements will be called weights.

In particular, when we reconstruct the values of shear velocities from Receiver Functions

(RF), Surface Waves (SW), and Travel Times (TT), the corresponding minimize functional

J(x) takes the form

J = w2

RF

��FRF (x)� yRF

��2 + w2

SW

��F SW (x)� ySW
��2 + w2

TT

��F TT (x)� yTT

��2 ,

i.e., equivalently, form (4.2.17), with

F (x) = W

0

BBB@

F SW (x)

FRF (x)

F TT (x)

1

CCCA
2 Rm, y = W

0

BBB@

ySW

yRF

yTT

1

CCCA
2 Rn

and

W = diag(w
i

), w
i

=
r

⌘
1

(e�
i

)2 p
, i = 1, . . . , p, w

i

=
r

⌘
2

(e�
i

)2 q
, i = p+ 1, . . . , p+ q,

w
i

=

s
1� (⌘

1

+ ⌘
2

)

(e�
i

)2 r
i = p+ q + 1, . . . , p+ q + r, (4.2.18)

e�
i

is the approximate standard deviation of each point, and p, q, and r are the number of

RF, SW, and TT observations [121].

4.2.8 Relation to Multi-Objective Optimization

When we have observations of only one type t, then, to find the corresponding model, we

minimize the function kF t(x)� ytk2. Minimizing this function is equivalent to minimizing

the expression

f
t

(x)
def

=
1

(e� t)2 ·m
t

·
��F t(x)� y

t

��2 .

In situations when we have observations of di↵erent type, and when we only know the

approximate values e� t of the corresponding accuracies, we need to minimize expressions
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(4.2.8), i.e., equivalently, expressions of the type

X

t

⌘
t

· f
t

(x). (4.2.19)

corresponding to all possible combinations ⌘
t

> 0 for which
P
t

⌘
t

= 1.

It is known that, under reasonable conditions, the resulting set of solutions can be de-

scribed in terms of the corresponding multi-objective optimization problem (MOP), namely,

the problem of optimizing

f(x)
def

= (f
1

(x), f
2

(x), . . . , f
t

(x), . . . , f
T

(x)).

For solving multi-objective problems, a natural idea is to generate the Pareto optimal set

(also known as Pareto front), i.e., the set of all the values x for which it is not possible to

improve all the criteria f
i

(x). In precise terms, the Pareto optimal set P (x) is defined as

P (x) = {x 2 ⌦ : 6 9x0 2 ⌦ (f(x0) < f(x)), (4.2.20)

where ⌦ is the set of all possible solutions that satisfy the corresponding constraints, and

f(x0) < f(x) means that

8t (f
t

(x0)  f
t

(x))& 9t (f
t

(x0) < f
t

(x)). (4.2.21)

Under reasonable conditions, elements of the Pareto set can be obtained by finding the

minima of all the functions (4.2.19) corresponding to all possible weights ⌘
t

adding to 1,

and, vice versa, each such minimum is an element of the Pareto set P (x).

In these terms, we can say that what we want in the general case, when we only know

the approximate values of the corresponding accuracies, is to find the Pareto set of the

multi-objective problem in which we minimize the criteria

f
t

(x) = const ·
��F t(x)� y

t

��2

corresponding to measurements of di↵erent types t.

In particular, in our geophysical example, we want to minimize the three criteria

f
FR

(x) = const · kFRF (x) � yRFk2, f
SW

(x) = const · kF SW (x) � ySW ||2, and f
TT

(x) =

const · kF TT (x)� yTTk2.
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4.2.9 How to Generate a “Typical” Solution

When we have data of several types, and we only know approximate values of the cor-

responding accuracies, our recommendation is to generate solutions corresponding to all

possible combinations of actual accuracies. The number of such solutions is huge, and

meaningfully analyzing all these solutions is di�cult. It is therefore desirable to select,

among these solutions, a solution which is, in some sense, typical.

The expectation is that, in general, this “typical” solution will only have features that

all other solutions have. Thus, when we look for features common for all possible solutions,

a good idea is to first analyze this typical solution, and then to check whether the features

that we found on this solution are indeed present in all other solutions as well.

In multi-objective optimization, there are several possible ways of generating such a

“typical” solution; see, e.g., ([107], [108], [57]). For example, once we find all solutions

x corresponding to di↵erent combinations, then, for each criterion f
t

, we can find the

smallest value fmin

t

and the largest value fmax

t

.The smallest values form an ideal point

fmin = (fmin

1

, . . . , fmin

t

, . . . , fmin

T

). We then select a solution x which is the closest to this

ideal point. Specifically, we normalize each di↵erences f
t

(x)� fmin

t

(x) to the interval (0,1)

by dividing it by fmax

t

(x) � fmin

t

(x), and then we minimize the corresponding normalized

distance. In other terms, we select a solution x for which the distance

d2(fmin, f(x)) =
TX

t=1

✓
f
t

(x)� fmin

t

(x)

fmax

t

(x)� fmin

t

(x)

◆
2

(4.2.22)

is the smallest possible.

4.3 Solving the Corresponding Constraint Optimiza-

tion Problems

In the proposed approach, we need to solve several minimization problems, corresponding

to di↵erent combinations of the influence parameters ⌘
t

. For each such combination, we
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Figure 4.1: Illustration of the solution set or Pareto front, which is, defined as the
weights times the perspective objective functions.
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need to find the value kF (x)�yk2 under the constraint g(x) � 0. Let us show how to solve

the corresponding constraint optimization problems.

4.3.1 Linearization

In most practical situations, we know the approximate values x
1

of the corresponding

quantities x, i.e., values for which x ⇡ x
0

. Since these values are close to each other, the

di↵erence x� x
0

is small and thus, we can expand the functions F (x) and g(x) into Taylor

series in this di↵erence and safely ignore terms which are quadratic (or higher order), and

only keep the first order Taylor approximation. Once we solve this first-order approximation

problem, we get a better approximation x
1

. We can use this approximation as the basis of

a new linearization and get an even more accurate approximation, etc.

On each of these iterations, we start with an approximate model x
k

, and then we use

the first order Taylor approximation of the operators F and g around x
k

:

F (x) ⇡ F (x
k

) + F 0(x
k

)�x = F (x
k

) + F 0(x
k

)(x� x
k

), (4.3.1)

g(x) ⇡ g (x
k

) +rgT (x
k

)(x� x
k

), (4.3.2)

where F 0(x
k

) is the matrix formed by the partial derivatives of F and rg is the matrix

formed by the partial derivatives of di↵erent components of g(x).

When we substitute these expressions into our constraint optimization problem, the

minimized function becomes quadratic. By the chain rule, the derivative of a quadratic

function (f(x))2 is equal to 2 · f(x) · f 0(x); to simplify the resulting formulas, we can

thus replace the original expression (f(x))2 with
1

2
· (f(x))2, then the derivative is simpler:

2 · f(x) · f 0(x). So, to simplify our formulas, instead of the problem of minimizing the

expression kF (x) � yk2, we consider the equivalent problem of minimizing the expression
1

2
· kF (x)� yk2 under the constraint g(x) � 0.

Substituting the expressions (4.3.1) and (4.3.2) in the corresponding constraint opti-

mization problem, we get the following linearized constraint optimization problem:

min
x

1

2
kF 0(x

k

)x+ r(x
k

)k2
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s.t. g(x
k

) +rgT (x
k

)(x� x
k

) � 0, (4.3.3)

where r(x
k

)
def

= F (x
k

)� y � F 0(x
k

)x
k

.

4.3.2 Primal Dual Interior-Point Method

To solve the linearized problem (4.3.3), we will use the Primal Dual Interior-Point method;

see, e.g., ([121], [83]). To use this method, we first reformulate our problem in a standard

form as follows:

min
x

1

2
kF 0(x

k

)x+ r(x
k

)k2

s.t. g(x
k

) +rgT (x
k

)(x� x
k

)� s = 0 (4.3.4)

s � 0

where components of s 2 R2n are called slack variables.

Then we define the Lagrange function associated to problem (4.3.4) as:

l(x
k

, z, s, w) =
1

2
kF 0(x

k

)x+ r(x
k

)k2 � (g(x
k

) +rgT (x
k

)(x� x
k

)� s)T z � sTw (4.3.5)

with the Lagrangian multipliers z, w 2 R2n, (z, w) � 0. For a given perturbation parameter

µ > 0, the perturbed Karush-Kuhn-Tucker (KKT) or necessary conditions are given by:

F̂ (x
k

, z, s, w) =

0

BBBBBB@

F 0(x
k

)T (F 0(x
k

)x+ r(x
k

))�rgT (x
k

)z

g(x
k

) +rgT (x
k

)(x� x
k

)� s

z � w

SWe� µe

1

CCCCCCA
= 0, (4.3.6)

where

F̂ : Rn+2n+2n �! Rn+2n+2n S = diag(s
1

, . . . , s
2n

), W = diag(w
1

, . . . , w
2n

) (4.3.7)

and e = (1, . . . , 1) 2 R2n.
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The formula (4.3.6) implies, in particular, that z � w = 0, and thus z = w. Hence the

perturbed KKT system (4.3.6) is rewritten as

F̂ (x, z, s, w) =

0

BBB@

F 0(x
k

)T (F 0(x
k

)x+ r(x
k

))�rgT (x
k

)z

g(x
k

)� s

SZe� µe

1

CCCA
= 0; (4.3.8)

thus the Jacobian associated to (4.3.8) is then computed as

F 0

0

BBB@

x

z

s

1

CCCA
=

2

6664

F 0(x
k

)TF 0(x
k

) �rgT (x
k

) 0
nxn

rg(x
k

) 0
nxm

�I
mxm

0
mxn

S Z

3

7775

2

6664

�x

�z

�s

3

7775
= �

2

6664

r
x

l(x, z, s)

g(x
k

)� s

SZe� µe

3

7775

The system (4.3.9) can be simplified further by eliminating the third block of equations

as follows. From the last block of equation in (4.3.9), we have

S�z + Z�s = �SZe+ µe,

therefore

Z�s = �SZe+ µe� S�z

�s = �s+ µZ�1e� Z�1S�z,

and then

rgT (x
k

)�x��s = rgT (x
k

)�x+ s� µZ�1e+ Z�1e+ Z�1S�z = �rgT (x
k

)x+ s

rgT (x
k

)�x+ Z�1S�z = µZ�1e� g(x
k

)

which allow us to write the reduced linear system

2

4�F 0(x
k

)TF 0(x
k

) rgT (x
k

)

rg(x
k

) Z�1S

3

5

2

4�x

�z

3

5 =

2

4 r
x

l(x, z, s)

Z�1µe� g(x
k

)

3

5
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4.4 Geophysical Datasets

4.4.1 Receiver Functions

A receiver function is simply a time series representation of the Earth’s response relative to

an incoming P -wave propagating near a recording station. A representation of a receiver

function is indicated in figure 2, with di↵erent incoming P -to-S converted waves and a

time series representation of the Earth response underneath a seismic station. Positive or

negative spike amplitudes represent positive or negative seismic velocity contrast. A receiver

function technique can model the structure of the earth by using seismograms from three

component (vertical, north, and east) seismic stations from teleseismic earthquakes. The

receiver function technique takes advantage of the fact that part of the energy of seismic

P waves is converted into S waves at discontinuities along the ray path ([9], [29]), and has

been utilized in many studies; see, e.g., ([143], [143], [6], [42]). For data collection and

processing, we use the Standing Order for Data (SOD) [87], [6] to request three component

seismograms for P -wave arrivals and for events with a minimum magnitude 5.5, depth in

the range of 1–600 km, and an epicentral distance ranging from 30� to 95�; see, e.g., [6].

Receiver functions were first applied in the late 1970s at solitary stations to obtain local

one-dimensional structural estimates [60]. Since then, there was an increase in the number

of stations that were deployed for seismic experiments. It is now possible to generate

detailed two or three-dimensional images of structures, such as the Moho and upper mantle

transition zone discontinuities near 410 km and 670 km depth; see, e.g., [139].

Receiver functions are derived using deconvolution [65], a mathematical method used to

filter a signal and isolate the superimposed harmonic waves. Specially, receiver functions

are calculated by deconvolving the vertical component of a seismogram from the radial

component, resulting in the identification of converted phases where there is an impedance

contrast (crustal-mantle boundary) [116].
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Figure 4.2: (Left) Illustration of a simplified ray diagram, which identifies the Ps,
converted phases, which comprise the receiver function for a single layer.
(Right) Vertical and radial seismograms and the corresponding receiver
function resulting from the deconvolution of the vertical component
from the radial component.
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4.4.2 Surface Wave Dispersion

Surface waves in general di↵er from body waves in many respects: they travel slower, lower

frequencies, largest amplitudes, and their velocities are in fact dependent on frequency

[116]. The surface wave velocities vary with respect to depth being sampled by each period

of the surface wave. The sampling by each period of the surface wave is known as dispersion

[116]. Valuable information can be inferred by measuring surface wave dispersion because

it will allow better understanding of the Earth’s crustal and mantle velocity structure [61],

[84], [121]. In particular, Love and Rayleigh wave group dispersion observations generally

account for average velocity structure as a function of depth [51], [72]. The dispersion curves

for surface waves are extracted from station records of three component seismograms for

di↵erent frequencies and distances, by using reduction algorithms that rely on spectral

analysis techniques. The important fact here is that, based on Rayleigh’s principle, surface

wave velocities are more sensitive to S wave velocity, although they are also theoretically

sensitive to P wave velocity and density. Figure 4 provides an example of teleseismic

Rayleigh waveforms for the 12/01/2010 event.

The Rayleigh’s principle states that the phase velocity perturbation, denoted by
�c

c
,

can be viewed as a function of (K
↵

, K
�

, K
⇢

), the sensitivity coe�cients for P wave velocity,

S wave velocity and density, respectively, i.e.,

�c(T )

c(T )
=

Z ✓
K

↵

�↵(z)

↵(z)
+K

�

��(z)

�(z)
+K

⇢

�⇢(z)

⇢(z)

◆
(4.4.1)

where T is the period and z is the depth. By investigating sensitivity function variation

in depth, the relative contribution of each property to dispersion can be shown. This sub-

ject is beyond the scope of our work, thus we just mention here that such analysis allows

geophysicists to show that the relative contribution of P wave velocity, and density to dis-

persion is smaller than the one for S wave velocity [51]. That is, surface wave dispersion

is much more sensitive with respect to S wave velocity, and therefore we have established

the dependence of this data set on shear wave velocity.
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Figure 4.3: Example of surface wave Rayleigh waveforms for all stations used for
this research. Dashed red line illustrates the window of where the phase
curve passes through the stations.
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For this research, a Matlab-based software package – that automatically downloads, ana-

lyzes, and measures phase as well as amplitude of surface waves to generate surface-wave to-

mography maps – was used to construct figure 5 describing tomographic images of the Texas

region. The Automated Surface-Wave Phase-Velocity Measuring System (ASWMS) was

the matlab package developed by [49], which essentially is an automated cross-correlation

based method to generate surface-wave tomography of the entire U.S. The ASWMS tool

was used to see what geological signatures that we can resolve using surface wave phase

data.

4.4.3 Delay Travel Times

For this research, we used TauP toolkit (⌧(p)) and Antelope (BRTTO) database program

to acquire the delayed travel times from the Array Network Facility (ANF) seismic catalog.

Figure 6, shows an example of some of the delayed travel time data used for this study that

were acquired from the ANF seismic catalog. The TauP toolkit program that we used to

acquire the delayed travel times, uses the spherical Earth geometry into the computation.

The TauP toolkit uses the relation of Snell’s law, according to which, for each ray k, the

ratio
sin i

kj

x
kj

=
�T

k

l
kj

remains constant along the k-th ray, i.e., does not depend on j. This

ratio is known as the constant ray parameter, and is usually denoted by p
k

. We use this

law to compute delayed travel times �T
k

(i.e., components of the vector F TT (x)):

�T
k

=
nX

j=0

h
j

x
kj

cos(i
kj

)
, (4.4.2)

where h
j

is the thickness of the j-th layer.

By using the Snell’s law as mentioned earlier, the incidence angle i
kj

can be rewritten

as:

i
kj

= sin�1(p
k

x
j

) (4.4.3)

Equation (4.4.2) can be rewritten as

�T
k

=
nX

j=0

h
j

x
kj

cos(i
kj

)
=

nX

j=0

h
j

(x
kj

cos(sin�1(p
k

x
kj

)))�1 (4.4.4)
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Figure 4.4: Surface wave phase map (Rayleigh) from USArray data used for this
research. Red colors indicate low phase velocities and blue colors as
high phase velocities for the Texas region.
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Using Snell’s law and rewriting equation (4.4.2), we obtained the partial derivatives

which are needed to use the primal dual interior point method mentioned earlier:

@�T
k

@x
kj

=
�h

j

x2

kj

cos(sin�1(p
k

x
kj

))2

 
cos(sin�1(p

k

x
kj

))� (p
k

x
kj

)2p
1� (p

k

x
kj

)2

!
(4.4.5)

When ray paths between the source and the receiver are short enough, Earth’s curvature

is known to be negligible, which provides us with the importance of utilizing equation (4.4.5)

for our computation of partial derivatives of T .

4.5 Results and Discussion

Based on the joint inversion results using multiple geophysical datasets, the compatiability

of the datasets provides better estimates of the target model based on numerical experi-

ments with the datasets and the synthetic rift model. In order to illustrate how receiver

functions and surface wave dispersion velocities complement each other, we present in fig-

ures 6-8 the inversion results for the data sets created from the rift velocity model.

In figure 6, the joint inversion of both RFs and TT data sets gives a better approximation

to the target model as expected based on the compatiablity between the two datasets. The

single inversion of receiver functions (left top) identifies the velocity interfaces (fig 6),

while single inversion of surface waves (fig 7) gives information on the average velocities

at di↵erent depths. For figure 7, the joint inversion of SWs and TT also provides a better

approximation of the target model indicated in red.

The joint inversion of RFs, SWs, and TT provides more accuracy and compatiability

when performing joint inversion of the three geophysical datasets as shown in figure 8.

A rift velocity model was used as our initial test for the MOP joint inversion scheme. For

the MOP joint inversion scheme, a comparison was done with the rift velocity model and
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Figure 4.5: Example plot shows P -waves when delay times are measured travel
times (Dist (deg) vs. Time(sec)) for di↵erent USArray Stations that
were used for this research from 09/15/2011 event. (Second) plot shows
the di↵erence between the predicted and measured travel times and
illustrates the P -wave delay.
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Figure 4.6: (Left) Single data inversion of receiver functions and synthetic rift
model. (Right) joint inversion using receiver functions and travel times
to obtain a better estimate of the rift model (target model).
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Figure 4.7: (Left) Single data inversion of surface wave dispersion measurements
and synthetic rift model. (Right) joint inversion using surface wave
dispersion measurements and travel times to obtain a better estimate
of the rift model (target model).
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Figure 4.8: (Left) Joint inversion of surface wave dispersion, receiver functions, &
travel times to obtain a better estimate of the rift model (target model).
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the initial velocity test model. The synthetic rift model was the best velocity model used for

this joint inversion scheme. Di↵erent synthetic Earth velocity models were used but overall,

the rift model was the best. Numerous tests were performed to test the compatibility and

complementary nature of the multiple geophysical datasets based from the results in figures

9-11. The algorithm used to perform the joint inversion of the multiple geophysical datasets

using the multi-objective joint inversion scheme was written in FORTRAN 77 and coupled

with a C code that performs the Multi-Objective Optimization method, based on the work

of [121].

Joint Inversion Algorithm (Two Datasets)

1. Given an initial velocity model (V
s

)
0

= x
0

RF observations yRF , SW dispersion

observations ySW , and a max. number of iterations l.

2. for ⌘ = 0, 0.1, 0.2, . . . , until 1.0 do

3. Evaluate yRF ,ySW

4. for k = 0, 1, 2, . . . , until l do

5. Evaluate F (x
k

),F 0(x
k

) and compute b = F (x
k

)� y � F 0(x
k

)x
k

6. Solve Equation (15) by using PDIP method.

7. if kF (x
k

)� yk  ✏ then

8. break

9. end if

10. Go to Step 4

11. end for

12. end for

Joint Inversion Algorithm (Three Datasets)

1. Given an initial velocity model (V
s

)
0

= x
0

RF observations yRF , SW dispersion

observations ySW , yTT and a max. number of iterations l.
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Figure 4.9: 1-D joint inversion results for a synthetic 1-D orogen velocity model.
The target velocity model in purple is the rift velocity model. The black
color represents the initial orogen model. The other colors represent the
improvement of the 1-D shear wave velocity models matching with the
target model (purple).
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Figure 4.10: 1-D joint inversion results for a synthetic 1-D continental velocity
model. The target velocity model in purple is the rift velocity model.
The black color represents the initial continental model. The other col-
ors represent the improvement of the 1-D shear wave velocity models
matching with the target model (purple).
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Figure 4.11: 1-D joint inversion results for a synthetic 1-D archean velocity model.
The target velocity model in purple is the rift velocity model. The black
color represents the initial archean model. The other colors represent
the improvement of the 1-D shear wave velocity models matching with
the target model (purple).
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2. for ⌘ = 0, 0.1, 0.2, . . . , until 1.0 do

3. Evaluate yRF ,ySW

4. for k = 0, 1, 2, . . . , until l do

5. Evaluate F (x
k

),F 0(x
k

) and compute b = F (x
k

)� y � F 0(x
k

)x
k

6. Solve Equation (15) by using PDIP method.

7. if kF (x
k

)� yk  ✏ then

8. break

9. end if

10. Go to Step 4

11. end for

12. end for

4.6 Conclusion

We apply an inversion scheme that expands a joint-inversion constraint least-squares (LSQ)

algorithm used to characterize a one-dimensional Earth’s structure. We utilize the Multi-

Objective Optimization technique to perform joint inversion of multiple data sets (receiver

functions, surface wave dispersion, and travel times). By jointly inverting these three geo-

physical data sets, we improve the model’s accuracy. In the ideal situation when we know

the relative accuracy of di↵erent datasets, we can formulate the joint inversion problem as

a (single) least-square optimization problem. In practice, however, we only know approxi-

mate values of these accuracies; so, for inversion, we use the Multi-Objective Optimization

Problem (MOP) approach. Di↵erent combination of weights were incorporated in the MOP

inversion scheme in order to map the Pareto Set (Solution Space) corresponding to receiver

functions, surface wave dispersion measurements, and travel times. From the Pareto Set,

the MOP technique performs a direct search method that selects the most feasible solution

from a set of alternative solutions from the model space [107], [108], [57]. For future work,
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we plan to incorporate gravity into our inversion scheme to obtain a more constrained

Earth structure and to better determine physical properties of the Earth structure.
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Chapter 5

Generation of 3-D shear wave based

models using 1-D constrained

multiobjective optimization

Understanding Earth’s tectonic processes requires determining the Earth structure. We

focus on determining Texas tectonic processes by applying a joint inversion scheme for mul-

tiple geophysical datasets. Specifically, we apply an inversion scheme that expands a joint-

inversion constraint least-squares (LSQ) algorithm used to characterize a one-dimensional

Earth’s structure. We use seismic data from regional networks in Texas and from the USAr-

ray, a dense network of permanent and portable seismographs placed systematically across

the continental United States. We collect and process seismic data, namely receiver func-

tions and surface waves. By jointly inverting these two geophysical data sets, we improve

the models accuracy. In the ideal situation when we know the relative accuracy of di↵erent

datasets, we can formulate the joint inversion problem as a single least-square optimization

problem. In practice, however, we only know approximate values of these accuracies; so,

for inversion, we use the Multi-Objective Optimization Problem (MOP) approach. We

use this approach to find the 1-D models, and then we use kriging to combine these 1-D

models into a single 3-D model. The resulting 3-D velocity models provide insight into the

tectonic history and physical properties of the Earth structure of the Texas region. We also

compare the structure of the upper mantle beneath the Texas region with other ancient

and/or active rift systems in the vicinity of the Texas region. This work is based on the

following publication:
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Thompson, L., A. A. Velasco, V. Kreinovich, R. Romero, and A. Sosa, 2015, 3-D shear

wave based models of the Texas region using 1-D constrained multi-objective optimization,

Journal of Geophysical Research, (manuscript preparation).

5.1 Introduction

For this research, we combine multiple geophysical datasets for the purpose of better de-

termining physical properties of the Earth structure. By simultaneously inverting multiple

datasets, we obtain a better estimate of the true Earth structure model based on inversion.

In general, in terms of inversion there are two reasons why the estimated Earth structure

model di↵ers from the true Earth model after inversion. The first reason is the inherent

non-uniqueness of the inverse problem that causes several (usually infinitely many) models

that satisfy the data. The second reason is that real geophysical data is always a↵ected

by noise, which introduces error associated with the estimation of the Earth Structure

model after inversion. By jointly inverting multiple geophysical data sets, we can avoid the

inherent non-uniqueness from inverting the geophysical datasets (e.g., receiver functions,

surface wave dispersion measurements) individually [133]. In this research, we use receiver

functions, and surface wave dispersion measurements data sets to characterize the crust

and upper mantle of various tectonic provinces within the Texas region.

In general, geophysical data sets such as receiver functions are suited to constrain the

depth of discontinuities and are sensitive to relative changes in S-wave velocities in di↵erent

layers but they are unable to determine the velocities between discontinuities. Surface waves

measurements on the other hand, constrain the absolute shear velocities between disconti-

nuities, but they cannot determine the depth of discontinuities [117]. The complementary

information provided by these datasets, reduces the inherent ambiguity or non-uniquess

of performing inversion (e.g., [40]. By jointly inverting seismic data, we can overcome the

di�culties of non-uniqueness and be able to facilitate the construction of the true Earth

model.
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When we process a single data set (e.g., Surface Wave Dispersion), we normally use

the least squares method to find the best-fit model. For multiple data sets (e.g., Surface

Wave Dispersion and Receiver Functions), if we knew the variance (uncertainty of data)

of the di↵erent measurements of the multiple data sets, we could still be able to use the

least squares approach to finding the model space. In practice, we only have an approx-

imate knowledge of the variances. So, instead of producing a single model, we want to

generate several models corresponding to di↵erent possible variances. A technique for gen-

erating several possible models (corresponding to di↵erent optimization criteria) is known

as Multi-objective Optimization (MOP). The resulting set of models is known as the Pareto

Front. Once several models corresponding to di↵erent possible variances are computed, we

can then proceed to select the most geophysical meaningful model from the Pareto Front.

Methods for such are described selection, e.g., in ([107],[108], [57]).

5.2 Tectonic Setting

The state of Texas, one of the major continental crustal regions in western US, was gen-

erated as part of the 1.37 Ga southern granite-rhyolite provinces [95]. In the southeastern

portion of the Llano Uplift province within Texas, according to [95], it was found that

the Llano Uplift upper crustal structure is primarily made up of dioritic and tonalitic

gneiss material, which is inferred to be a representation of the 1.33-1.30 Ga allochthonous

magmatic arc [95]. This arc, according to [95], [79], is thought to have been accreted

to Laurentia during the Grenville orogeny (mountain building period) at approximate 1.1

Ga due to N-dipping subduction beneath Laurentia during this period. Another tectonic

province within Texas, the Balcones province, lies above the transitional crust and sep-

arates the Mesoproterozoic craton from the Pennsylvanian Ouachita orogenic lithosphere

[95]. Geologists use the Balcones province as an approximate southern limit of the North

American cratonic boundary and the western limit of attenuated transitional crust beneath

the Texas Gulf coastal plain according to [95]. The western limit of attenuated transitional
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crust beneath the Texas Gulf coastal plain is a result of the Gulf of Mexico Jurassic oceanic

lithosphere opening according to [74], [110], [95]. It still remains unclear the nature of the

transitional crust of the Texas Gulf coastal plain. The transitional crust is buried beneath

thick sediments of the Gulf of Mexico coastal plain and according to [95], they conjectured

how the crust could be composed of one or more of the following components:

• metamorphosed sediments and crust of the Paleozoic passive margin, deformed during

the Ouachita orogeny [75];

• fragments of Gondwana, left behind when Gondwana separated from Laurentia in

Jurassic time [99];

• juvenile mafic crust of Jurassic age [74];

• thinned crust of southern Laurentia.

Observations of high and low velocities within the mantle are usually determined

through tomographic methods. For this research, we will use MOP formulation to gen-

erate 3D shear wave models to determine regions of Texas that would have high and low

velocities within the mantle. Using the MOP optimization technique to generate 3D im-

agery that helps to determine the petrophysical nature of the Lithosphere-Asthenosphere

Boundary (LAB), which is still considered a subject for discussion among the geoscience

community (e.g., [59], [30], [32]). Through the development of our 3D models using multiple

data sets, we are able to evaluate and analyze the Upper mantle seismic velocity structures

in both the vertical and horizontal directions, which will be the key to our understanding

of the overall tectonic structure of Texas. Within the 2009-2011 time period, the USArray

Transportable Array (TA) deployed an array of seismic stations within the Midwestern

US and through the USArray data, which we are able to use to investigate the velocity

structure beneath the stable North American craton. Within the Midwestern region of the

US (Texas), previous seismic work using USArray dataset found that the thick continental

lithosphere is neutrally buoyant and this buoyancy e↵ect is caused by iron depletion and
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Figure 5.1: Tectonic map of Texas with dark colors that represent older rock ma-
terial and lighter colors represent younger rock material. DB label is
Delaware Basin, MB is Midland Basin, LU is Llano Uplift, BFZ is the
Balcones Fault Zone, and SOA is Southern Oklahoma Aulacogen.
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decreased buoyancy from cold temperatures in a thick thermal boundary layer ([23]. By

utilizing the USArray Data for Texas, we are able to characterize the upper mantle struc-

ture beneath a large portion of the North American stable Precambrain interior based on

the development of shear wave models using receiver functions, and surface wave dispersion

measurements. Through shear wave models for the entire state of Texas, we might expect

to find the presence of low-velocity layers on top of the 410 km discontinuity, which could

be an indication of high water concentrations in the transition zone ([23]). Teleseismic

imaging methods have been used in previous geophysical research using the USArray TA

dataset to map upper mantle seismic structure, e.g., Body wave travel-time tomography,

surface wave dispersion tomography, and receiver function analysis [18], [118]; [84], [80],

[92], [20].

5.3 Receiver Functions

A receiver function maps the seismic response of the earth beneath a seismic station to

an incoming, teleseismic P wave. Deconvolving the vertical component of a teleseismic

earthquake seismogram from the radial component (e.g., [60]) results in a receiver func-

tion, which then allows for the identification of converted phases corresponding to strong

impedance contrasts (e.g., the crustal-mantle boundary). Since we use teleseismic events

that arrive to the stations with near-vertical incidence, receiver functions can also be used

for imaging deep structure ([36], [42], [59], [64], [112]. Receiver functions can provide valu-

able information for investigating magma lenses within the crust, determining the Moho

depth, other upper-mantle discontinuities [70], structure and evolution of the crust [9], and

rifting extension and magmatism (e.g., [28]).

EarthScope provides a framework for broad, integrated studies in the Earth sciences

(e.g., research on fault properties, earthquake process, plate boundary process, large-scale

continental deformation, etc). USArray, which is part of the EarthScope experiment, is a
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15-year program to place a dense network of permanent and portable seismographs across

the continental United States. The Plate Boundary Observatory (PBO) component of

EarthScope is a geodetic observatory designed to study the three-dimensional strain field

resulting from deformation across the active boundary zone between the Pacific and North

American plates in the western United States. The San Andreas Fault Observatory at

Depth (SAFOD) component of Earthscope is a borehole observatory across the San Andreas

Fault to directly measure the physical conditions under which earthquakes occur. USArray

Transportable Array (TA), an element of EarthScope, places a rolling, dense network of

over 400 permanent and portable seismographs on a nearly uniform 70 km grid across the

U.S. Each station of the TA network collects data for two years before it is re-deployed to

a new location [80]. The USArray was in the region from approximately 2008 to 2010. We

initially collected data from the EarthScope Automated Receiver Survey (EARS) website

(http://www.seis.sc.edu/ears/) for the Texas region. The EARS website contains the data

sets of all frequent seismic activity and a database of all the recording stations that monitor

seismic events.

In Texas, parts of the Transportable Array were deployed to western Texas in 2008.

Between 2009 and 2010, these Transportable Array stations in western Texas were moved

to central and eastern Texas (Fig 3b). The Reference Network consists of permanent

stations that are separated by 300 km spacing across the United States. In Texas, there

are 10 Reference Network stations and we collected data from 8 recording stations that are

located in central and eastern Texas.

We requested seismogram data from the Incorporated Research Institutes for Seismology

(IRIS) Data Management Center (DMC) for teleseismic events occurring from January of

2011 to December of 2011 for Transportable Array stations. A collaborator, Keisuke Irie,

acquired USArray data for 2009 and 2010 and we incorporated the data that we requested

from the IRIS DMC with what Keisuke acquired for his M.S. thesis and used it for our

complete receiver function analysis for Rio Grande Rift and the entire state of Texas. The
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Figure 5.4: Red dots represent the Earthscope Transportable USArray stations
used for this research. The figure illustrates how the Transportable
Array migrated from west to east during 2008-2010.
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locations of the USArray stations during 2009 are shown on Fig 3b.The blue dots represent

the locations of the reference network stations and the red dots symbolize the locations of

the Transportable Array stations. The USArray stations were then transported from west

of Texas to central Texas in May of 2010 indicated by Fig 3b. The USArray stations were

then moved to east of Texas during the time period between 2010 and 2011.

5.4 Surface Wave Dispersion

Surface waves in general di↵er from body waves in many respects: they travel slower, lower

frequencies, larger amplitudes, and their velocities are in fact dependent on frequency [116].

The surface wave velocities vary with respect to depth being sampled by each period of

the surface wave. The sampling by each period of the surface wave is known as dispersion

[121]. Valuable information can be inferred by measuring surface wave dispersion because it

allows better understanding of the Earth’s crustal and mantle velocity structure [84], [121].

As part of the systematic determination of earthquake moment tensors for North Amer-

ican earthquakes, Saint Louis University measures fundamental mode Love and Rayleigh

wave spectral amplitudes and group velocities using a multiple filter analysis from local

to regional earthquakes. Tomography is then used to obtain tomographic images of group

velocity dispersion for North America with emphasis on the continental United States (e.g.,

[22], [129]; [148], [18]).

In particular, Love and Rayleigh wave group dispersion observations generally account

for average velocity structure as a function of depth [51], [72]. The dispersion curves

for surface waves are extracted from station records of three component seismograms for

di↵erent frequencies and distances, by using reduction algorithms that rely on spectral

analysis techniques. The important fact here is that, based on Rayleigh’s principle, surface

wave velocities are more sensitive to S wave velocity, although they are also theoretically

sensitive to P wave velocity and density. Rayleigh’s principle states that the phase velocity
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perturbation, denoted by �c

c

, can be viewed as a function of (K
↵

, K
�

, K
⇢

) the sensitivity

coe�cients for P wave velocity, S wave velocity and density, respectively, i.e.
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◆
(5.4.1)

where T is the period and z is the depth. By investigating sensitivity function variation

in depth, the relative contribution of each property to dispersion can be shown. This

subject is beyond the scope of our work, thus we just mention here that such analysis

allows geophysicists to show that the relative contribution of P wave velocity and density

to dispersion is smaller than the one for S wave velocity [51]. Thus, surface wave dispersion

is much more sensitive with respect to S wave velocity, and therefore we have established

the dependence of this data set on shear wave velocity.

5.5 Joint Inversion

We want to find the parameters x = (x
1

, · · · , x
n

) from the results y = (y
1

, · · · , y
m

) of

measuring quantities y
i

= F
i

(x) depending on these parameters. A usual way to estimate

parameters in the presence of noise is to use the least squares method, i.e., to find the

values x that minimize the expression

S =
mX

i=1

(F
i

(x)� y
i

)2

�2

i

(5.5.1)

where �
i

is the standard deviation corresponding to the i-th measurement. When

we use measurements of di↵erent types t,t0, etc, it is reasonable to assume that all the

measurements i of type t have the same accuracy �
i

= �t. Then,

S =
mX

i=1
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i
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i

)2
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i

=
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i2t
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This expression can be rewritten as J(x) =
P

T

t=1

w
t

· f
t

(x), where w
t

= 1

(�

t
)

2 and f
t

(x) =
P

i2t(Fi

(x)�y
i

)2. In practice, as we have mentioned earlier, we do not know the exact values
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of �t. As a result, instead of a single model x, we need to consider models x corresponding

to all possible combinations of the weights w
t

. It is known that under some reasonable

conditions, this set coincides with the Pareto set for a multi-objective optimization problem

f
1

(x) ! min, f
2

(x) ! min, · · · , f
T

(x) ! min, (5.5.3)

where a Pareto set is defined as the set of all tuples x for which it is not possible to improve

all criteria, i.e., for which

@x0(8t(f
t

(x0)  f
t

(x))) & 9t(f
t

(x0) < f
t

(x)). (5.5.4)

Once we have generated all such tuples, it is reasonable to select a tuple x which is the

closest to the ideal point. Specifically, for each type t, we find the smallest fmin

t

and the

largest fmax

t

of the values, f
t

(x), and then we find the tuple x for which
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f
t
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t

(x)

fmax

t

(x)� fmin

t

(x)

◆
2

(5.5.5)

is the smallest possible [57]. To find a model x corresponding to each combination of

weights w, we use an iterative algorithm. Once the k-th approximation x
k

is computed,

we linearize the problem, by replacing F
i

(x) with F
i

(x
k

)+F 0
i

(x
k

)(x�x
k

), and then we use

the primal dual interior-point method to solve the corresponding quadratic optimization

problem [121].

To make sure that the resulting model is geophysically meaningful, i.e., all velocities

x
i

are within the bounds a
i

 x
i

 b
i

corresponding to the depth of the i-th location,

we optimize the quadratic function f
t

(x) under the constraints a
i

 x
i

 b
i

. For all the

stations involved in the geophysical inversion, the initial velocity model, x
0

, corresponds to

the AK-135 model of [56], starting at 10 km depth and distributed at a 2 km interval up

to 70 km depth, then at a 5 km interval up to 250 km and finally at 10 km until 300 km.

By incorporating explicit velocity bound constraints into the inversion model, we are able

to produce a better constrained model while having more stable inversions [121].
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5.6 Joint Inversion Results

Joint inversion means minimizing the weighted sum w
1

· f
1

+ w
2

· f
2

+ · · · of the sums

f
1

, f
2

, · · · corresponding to measurements of a di↵erent type; the weights w
t

are inversely

proportional to the standard deviations of the measurements of the corresponding type.

However, we do not know the exact values of these standard deviations. We can make

such crude estimates of these values and thus, of the weights. However, if the 3-D models

are based on these approximate weights, then, if we see some unusual features on the 3-D

model, a geophysicist would be somewhat skeptical to what extent the features are real

and not caused by a specific selection of weights. It would be much more convincing if,

instead of a single combination of weights, we would try di↵erent combinations and show

for all these combinations, we see similar features in the 3-D models.

This is, in e↵ect, why we see the multi-objective optimization technique: instead of find-

ing a model that optimizes a single objective function S, we find the set of optimal models

corresponding to di↵erent weighted combinations of several objective functions f
1

, f
2

, · · ·

If the new feature appears in all these models, then a geophysicist would be much more

confident that the similar features revealed in the 3-D models are real and not caused by a

arbitrary selection of weights.

An additional advantage is that by comparing di↵erent models, we can see how accu-

rately we can determine the parameters of this feature, for example, if the average size of a

pluton in di↵erent models is approximately 7.5 km, and the standard deviation estimates

based on di↵erent maps is 2.5 km, then we know that the actual size is 7.5 ± 2.5.

5.7 Kriging interpolation from 1D velocity profiles

Since our ultimate goal is to create a 3D Earth structure model of the Texas region, we

use the 1D S wave velocity profiles of each station as input data for a kriging interpolation

algorithm [113]. In general, interpolation algorithms estimate values by using a weighted
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sum of surrounding data. Kriging represents an example of a computationally e�cient

interpolation technique that allows the incorporation of uncertainty on the predicted values.

We implement a Bayesian kriging approach that integrates variable spatial damping, a

useful tool to control the kriged solution in extrapolation zones where few or no data is

available [113]. In our case, the station spacing within our region represents a 2D spatial

grid, with each station now having a depth varying 1-D velocity structure. We thus can

estimate the unknown velocities of the 2-D grid at di↵erent depths based on the known

velocities, thus creating our 3-D model.

Initially, we remove an appropriate trend prior to applying kriging [113], which, in

our case, corresponds to the mean of the velocities at a certain depth. A spatially damped

kriging estimator then incorporates variable damping and measurement error multiplied by

a unit-normalized function, which decreases noise values to zero according to the predictions

point relative distance. As a result, we obtain a smoothly damping e↵ect over the predicted

velocities that varies according to each velocity node and its surroundings. For our results,

we choose the blending functions of 2� to guarantee good spatial sampling.

Interpolating the 1-D profiles by means of kriging can help us to illuminate better the

Earth structure beneath each station in the Texas region. Schematically, if each station had

perfect azimuthal coverage, the region below each station would have cone shaped raypaths,

where at a certain depth (that depends on station spacing), the raypaths at adjacent

stations begin to overlap, providing us with full subsurface structure coverage. Before

this depth, we expect that the surface wave group dispersion information obtained from

regional earthquakes can improve the average crustal velocity structure and also the vertical

resolution [112]. In this fashion, we account for velocity structure resolution avoiding

additional inversions by grouping the 1D profiles depending on azimuthal range as indicated

by [6]. Generally, the upper mantle of a tectonically active region is expected to exhibit

3D heterogeneities with a length scale smaller than both the lateral resolution of surface

waves and vertical resolution of receiver functions [84]. Therefore, the models obtained by

using these two data sets should resolve the main features beneath the region of study.
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5.8 3-D Texas S-Wave Velocity Model

We perform 1-D joint inversions using our MOP approach for 270 stations from EarthScope

USArray network. In general, each independent joint inversion includes at least 3 receiver

function bins created according to an average ray parameter, with a width of approximately

0.01 s/km between 0.04 s/km and 0.07 s/km. The average ray parameter was determined

by taking the mean value of the maximum and minimum ray parameters for each station

before being used for stacking. The number of receiver functions employed to create these

stacks depends on the station, but in general is not less than 25 per ray parameter. Each

receiver function consists of 820 data points for a time range from -5 to 80 seconds. We

also include fundamental mode Love and Rayleigh group velocities with 50 to 65 dispersion

measurements, with periods between 5 to 140 seconds. Since the station spacing of the

USArray is about 70 km, we anticipate lateral resolution of that order for each individual

1-D inversion in the Texas region.

We first determined the average map and deviation by taking the arithmetic average

of maps corresponding to di↵erent combination of models. A minor problem with this

approach is that for abrupt discontinuous transitions (typical of the Earth structure), even

when all the models show an abrupt transition but they all show it at somewhat di↵erent

depths; the average model will have this transition blurred in the 3-D model. From this

viewpoint, a better approach may be to take a median of several models instead of arith-

metic average; in this case, there is no blurring.

We first estimated the di↵erence between di↵erent models by taking the di↵erences

d
1

(x) � d
2

(x) between the velocity values at the corresponding 3-D points x, and then

take, e.g., the rms of these di↵erences, i.e., the square root of the sum of all the values

(d
1

(x)� d
2

(x))2 corresponding to di↵erent spatial points x. The problem is that if we have

two abrupt transitions at somewhat di↵erent depths, these models are very similar, but the

sum of the squares of the di↵erence may be huge.

We will get a more accurate description of how close the models are if we compare the
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value d
1

(x) at each 3-D point x not only with the value d
2

(x) at the same spatial location

x, but also with the values d
2

(y) for all values y in an appropriate neighborhood of x. To

be more precise, instead of the sum of the values (d
1

(x)� d
2

(x))2, we take the sum of the

values min
y

(d
1

(x)�d
2

(y))2 where minimum is taken over all points y for which the distance

d(x, y) does not exceed a certain threshold ✏

Figures 5 through 9 show the resulting 3D crustal and upper mantle structure images

with a combination of di↵erent weights with the constraint W
R

F +W
S

W = 1. Figure 10

and 11 show the overall average of the ten di↵erent shear wave models with varying weights.

Figure 10 shows the average of all the models in a 3-D perspective for the Texas region.

Figure 11 shows the resulting average shear wave depth slices in a di↵erent perspective

other then a 3-D, in order to highlight any anomalies within the major tectonic provinces

of the Texas region. For Figure 11, we use a color scale (maximum to minimum velocities)

to highlight crustal anomalies and a di↵erent color scale in Figures 5 through 9 with a

reduced color spectrum varying from 4.0 km/s to 5 km/s, similar to that used by [136] to

highlight mantle anomalies.

Figures 12a-e show our 2-D velocity model cross-sections A-A
0
, B-B

0
, C-C

0
, D-D

0
, and

E-E
0
. Figure 12a, cross section A-A

0
, coincides with latitude 32�, and passes through

Delaware Basin, Midland Basin, and ends at the Balcones Fault Zone. Cross-section B-B
0

(Fig 12b) coincides with latitude 33� and covers the part of the Rio Grande Rift (RGR)

and the center of our study area. In figures 12c-e, coincides with latitudes of 34�-36�

and covers part of the RGR, as well as, the Southern Oklahoma Aulacagen (SOA). The

lithosphere-athenosphere boundary (LAB) seems to lie approximately 140 km depth for

the average 2-D shear wave model cross-sections that coincides with latitudes 32�-33�. The

cross-sections at 34�-36�, seem to have the LAB around 160 km near the SOA tectonic

province. To further investigate how accurate are our upper mantle shear wave models,

Figures 13-14, shows depth slices from 50 to 300 km depth in 50 km intervals and 3-D
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wRF=0.1 wSW=0.9

wRF=0.2 wSW=0.8

Figure 5.6: 3-D shear wave model of the Texas region from the surface to 300km
depth. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). W

RF

=0.1,0.2
and W

SW

=0.9,0.8 are the weights that were used to generate the 3-D
models with the constraint W

RF

+W
SW

= 1.
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wRF=0.3 wSW=0.7

wRF=0.4 wSW=0.6

Figure 5.7: 3-D shear wave model of the Texas region from the surface to 300km
depth. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). W

RF

=0.3,0.4
and W

SW

=0.7,0.6 are the weights that were used to generate the 3-D
models with the constraint W

RF

+W
SW

= 1.
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wRF=0.5 wSW=0.5

wRF=0.6 wSW=0.4

Figure 5.8: 3-D shear wave model of the Texas region from the surface to 300km
depth. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). W

RF

=0.5,0.6
and W

SW

=0.5,0.4 are the weights that were used to generate the 3-D
models with the constraint W

RF

+W
SW

= 1.
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wRF=0.7 wSW=0.3

wRF=0.8 wSW=0.2

Figure 5.9: 3-D shear wave model of the Texas region from the surface to 300km
depth. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). W

RF

=0.7,0.8
and W

SW

=0.3,0.2 are the weights that were used to generate the 3-D
models with the constraint W

RF

+W
SW

= 1.
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wRF=0.9 wSW=0.1

wRF=1.0 wSW=0.0

Figure 5.10: 3-D shear wave model of the Texas region from the surface to 300km
depth. Red colors represent low shear wave velocities (4 km/s) and
blue colors represent high shear wave velocities (5 km/s). W

RF

=0.9,1.0
and W

SW

=0.1,0.0 are the weights that were used to generate the 3-D
models with the constraint W

RF

+W
SW

= 1.
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Figure 5.11: Average of the ten 3-D shear wave model of the Texas region from the
surface to 300km depth. Red colors represent low shear wave velocities
(4 km/s) and blue colors represent high shear wave velocities (5 km/s).
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Figure 5.12: Average of the ten-shear wave model of the Texas region from the
surface to 300km depth. Red colors represent low shear wave velocities
(3 km/s) and blue colors represent high shear wave velocities (5 km/s).
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Figure 5.13: 2-D average shear wave model of ten models using di↵erent combina-
tion of weights for the Texas region. Fig 3a shows where we took the
cross section within Texas. Gray inverted triangles represent USArray
stations. Red colors represent low shear wave values and blue colors
represent high shear wave values.
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Figure 5.14: 2-D average shear wave model of ten models using di↵erent combina-
tion of weights for the Texas region. Fig 3a shows where we took the
cross section within Texas. Gray inverted triangles represent USArray
stations. Red colors represent low shear wave values and blue colors
represent high shear wave values.
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Figure 5.15: 2-D average shear wave model of ten models using di↵erent combina-
tion of weights for the Texas region. Fig 3a shows where we took the
cross section within Texas. Gray inverted triangles represent USArray
stations. Red colors represent low shear wave values and blue colors
represent high shear wave values.
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Figure 5.16: 2-D average shear wave model of ten models using di↵erent combina-
tion of weights for the Texas region. Fig 3a shows where we took the
cross section within Texas. Gray inverted triangles represent USArray
stations. Red colors represent low shear wave values and blue colors
represent high shear wave values.
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Figure 5.17: 2-D average shear wave model of ten models using di↵erent combina-
tion of weights for the Texas region. Fig 3a shows where we took the
cross section within Texas. Gray inverted triangles represent USArray
stations. Red colors represent low shear wave values and blue colors
represent high shear wave values.
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standard deviation of the ten shear wave models in a 3-D perspective for our study area.

Comparing our 3-D model directly to others can be di�cult and requires complete

visualization of all models in one figure (e.g., [10], [88]). Since our models were derived

from 1-D inversions that included two complementary data sets and then interpolated to

3-D, we expected to find di↵erences in our 3-D model compared to previous studies. We

also focus solely in this region, while many of the other models include much larger regions

([35]; [64], [81], [119]). Thus, we show features relevant to Texas evolution, and highlight

those that we believe are fully consistent with most recent and past models in the Texas

region obtained by using di↵erent data sets and techniques (e.g., [93],[94], [111]). We discuss

below the impact of the MOP approach, the new model for the Texas region.

5.8.1 MOP methodology

We implement a new approach for joint inversion of receiver function and surface wave

group dispersion data based on constrained optimization [121]. We create independent

1D Earth velocity profiles of upper mantle velocity structure along the Texas region. In

general, no smoothing or damping factors were used to stabilize the inversions. This is an

advantage when compared to other standard techniques, which often require tuning of sev-

eral regularization parameters. It is well known that for severely ill-posed inversions that

may appear for some stations, determining the optimum regularization parameters remain

as a di�cult and often speculative task [121], [150]. There are several strategies to choose

these regularization parameters [44], [150], and some recent advances on transdimensional

inversion to include them directly as inversion parameters [14]. However, there is not yet

an analytical or automatic way to find the best parameter for all particular cases [44], [78].

The MOP approach reduces the subjectivity of these selections, since the simple inclusion

of a damping parameter stabilizes the inversion [121]. Some stations have inversion conver-

gence issues mostly due to the absence of good quality RF data to identify absolute S-wave

velocities and sharp discontinuities.
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Figure 5.18: 3-D standard deviation (std) model of the Texas region using the dif-
ference of the ten 3-D shear wave models. Red colors represent low
standard deviation values or error of the ten models and blue colors
represent high std values of all the 3-D models.

133



Figure 5.19: 3-D standard deviation (std) model of the Texas region using the dif-
ference of the ten 3-D shear wave models. Red colors represent low
standard deviation values or error of the ten models and blue colors
represent high std values of all the 3-D models.
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[6] use a similar approach combining results obtained by independent joint inversion

of surface wave phase velocities and receiver function information, to compute 1D S wave

velocity profiles for the Colorado Plateau. By creating 3D images of Earth structure based

on independent inversions that produce 1D velocity profiles, results are likely inferior com-

pared to a full 3D parameter approach [6]. However, a 3D inversion involves a high volume

of information and a great number of parameters, which may be numerically intractable.

We will explore the migration of our technique to a full 3D inversion in future work using

other geophysical datasets such as travel times and gravity.

We can adjust our inversion approach by tuning the kriging interpolation blending

function according to the geological province where the stations are located, e.g. Delaware

Basin, Llano Uplift, Balcones Fault Zone, and the Southern Oklahoma Aulagen, as an

attempt to enhance the performance of the inversion algorithm. However, our approach

allows us to begin with a standard initial model (ak135: [56]), and produce coherent inde-

pendent inversions that could be combined for a consistent 3D structure. This represents

another di↵erence to the approach presented by [6], where they weight the contribution of

each inversion separately to select a suitable initial model.

5.8.2 Interpretation

[43] argue that the Southern Oklahoma and adjacent parts of Texas contain an extensive

igneous province emplaced during Early Cambrian rifting within the Southern Oklahoma

rift zone. The SOA rift zone contains an extensive, largely bimodal igneous assemblage

and its considered to be Early Cambrian in age but could also extend back into late Neo-

proterozoic for the Texas-Oklahoma border ([43]). Southern Oklahoma rift zone, contains

felsic igneous rocks of ⇠1.4 Ga. The southern midcontinent of granite-rhyolite province,

form the main subsurface basement units of each side of the Southern Oklahoma rift zone

(e.g., [130], [97]). Based from residual gravity anomaly maps by [43], they found that the

Southern Oklahoma rift is a high density-high velocity body (mafic igneous complex) that

is ⇠40 km wide and extends at least to a depth of 10 km. Southern Oklahoma rift zone
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is volcanic fill and has a distinct geophysical signature. Figure 11 shows a clear SW-NE

seismic trend that coincides with the high density-high velocity body that [43] found using

gravity. Figure 13 supports the high-velocity anomaly found because the standard devia-

tion is very low which results in a well-constrained locality. We have taken several cross

sections across 34�, 35�, and 36�, which shows consistent transition from low to high veloc-

ity contrast that lies within the Southern Oklahoma rift zone.

In general, the presence of high-velocity lithosphere in the upper mantle is known to

be a ubiquitous feature for stable continental provinces like the Texas region ([146]). Un-

der certain tectonic environments, old cratons can be reactivated and lead to extensive

magmatic activity which could explain why we find such high velocities at ⇠200 km depth.

5.9 Discussion

The cross-sections at 34�-36�, have a deep LAB signature around 160 km near the SOA

tectonic province which are similar results of [59], where they found a deep LAB structure

found under the border region of Texas and Oklahoma and over the Colorado Plateau,

which they believe could be remnants of the Farallon slab. Previous studies (e.g., [27],

[111]) have discussed that a dissected part of the Farallon slab was accreted with portions

of the North American craton. [92] and [85], have found high velocities in their tomography

results and interpret their observations as having subduction fragments that still remain

deep in the Earth Structure. [59] found a deep LAB structure using receiver functions, and

discovered that the LAB lies within the Texas-Oklahoma border region where the SOA is

located and known to be a Proterozoic mid-continental rift [137], [59]. [63] have also found

high velocity anomalies in their data below the Colorado Plateau, which they also derived

from receiver functions and interpreted the high velocities as a result of delamination of

lower parts from the lithosphere. The LAB boundary usually are not imaged underneath

thick continental interiors, although the characteristics of the boundary vary in di↵erent

tectonic settings, it has remained a puzzle as to why the LAB would be so variable in
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nature [105].

5.10 Conclusions

We present a new model of crustal and upper mantle structure beneath the Texas region.

Separate joint inversions were performed for 270 Earthscope USArray stations. We create a

generic framework that connects a constrained optimization joint inversion algorithm with a

Bayesian interpolation scheme for high-resolution imaging of Earth structure. Furthermore,

this scheme e�ciently provides a robust alternative to extend simultaneous independently

created 1D S wave velocity models, to produce 3D images of Earth structure compared to

full 3D inversions. Our framework generates a continuous and smooth 3D velocity model of

the ancient Rift system within Texas, revealing the complexities of the tectonic provinces

within our study area and helping us to better characterize its crustal and upper mantle

velocity structure. We identify the LAB boundaries for the provinces of DB, MB, LU,

SOA and BFZ. We have no evidence of a deep mantle plume that drives the current rifting

process, and all velocity anomalies are shallower than 120 km.
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